
UML Notation Guide

version 1.1
1 September 1997

Rational Software ■ Microsoft ■ Hewlett-Packard ■ Oracle

Sterling Software ■ MCI Systemhouse ■ Unisys ■ ICON Computing

IntelliCorp ■ i-Logix ■ IBM ■ ObjecTime ■ Platinum Technology ■ Ptech

Taskon ■ Reich Technologies ■ Softeam

ad/97-08-05

Copyright © 1997 Rational Software Corporation
Copyright © 1997 Microsoft Corporation
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.
Copyright © 1997 Sterling Software.
Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.
Copyright © 1997 ICON Computing.
Copyright © 1997 IntelliCorp.
Copyright © 1997 i-Logix.
Copyright © 1997 IBM Corporation.
Copyright © 1997 ObjecTime Limited.
Copyright © 1997 Platinum Technology Inc.
Copyright © 1997 Ptech Inc.
Copyright © 1997 Taskon A/S.
Copyright © 1997 Reich Technologies
Copyright © 1997 Softeam

Photocopying, electronic distribution, or foreign-language translation of this document is permitted,
provided this document is reproduced in its entirety and accompanied with this entire notice, including the
following statement:

The most recent updates on the Unified Modeling Language are available via the worldwide web:
http://www.rational.com/uml

The UML logo is a trademark of Rational Software Corporation.

. . .

. . . 4

. .

. . . . 11

 . . . 13

 . . .

 . .

 . . . 3

. . . . 3

Contents

1. DOCUMENT OVERVIEW 1

2. DIAGRAM ELEMENTS 3

2.1 Graphs and their Contents . 3
2.2 Drawing paths . 4
2.3 Invisible Hyperlinks And The Role Of Tools .
2.4 Background information . 4
2.5 String . 5
2.6 Name . 6
2.7 Label . 7
2.8 Keywords. 8
2.9 Expression . 8
2.10 Note . 10
2.11 Type-Instance Correspondence .

3. MODEL MANAGEMENT 13

3.1 Packages and Model Organization .

4. GENERAL EXTENSION MECHANISMS 16

4.1 Constraint and Comment . 16
4.2 Element Properties. 18
4.3 Stereotypes. 20

5. STATIC STRUCTURE DIAGRAMS 22

5.1 Class diagram. 22
5.2 Object diagram. 23
5.3 Classifer . 23
5.4 Class. 23
5.5 Name Compartment. 25
5.6 List Compartment . 26
5.7 Attribute. 29
5.8 Operation . 32
5.9 Type vs. Implementation Class .5
5.10 Interfaces . 36
5.11 Parameterized Class (Template) . 8
5.12 Bound Element . 40
5.13 Utility . 42
5.14 Metaclass . 43
5.15 Class Pathnames 43
5.16 Importing a package 44
5.17 Object. 46
5.18 Composite object . 48
5.19 Association . 50
5.20 Binary Association. 50
UML v 1.1, Notation Guide iii

Contents

. .

.

. . .

.

.

 .

 . .

.

. .
 .
5.21 Association End . 52
5.22 Multiplicity . 56
5.23 Qualifier . 58
5.24 Association Class. 59
5.25 N-ary association . 61
5.26 Composition. 62
5.27 Links . 65
5.28 Generalization . 67
5.29 Dependency . 71
5.30 Derived Element . 73

6. USE CASE DIAGRAMS 75

6.1 Use Case Diagram . . . 75
6.2 Use Case . 77
6.3 Actor . 77
6.4 Use case relationships . 78

7. SEQUENCE DIAGRAMS 80

7.1 Kinds of Interaction Diagrams. 80
7.2 Sequence diagram . 80
7.3 Object lifeline . 83
7.4 Activation . 84
7.5 Message . 85
7.6 Transition Times . 87

8. COLLABORATION DIAGRAMS 88

8.1 Collaboration . 88
8.2 Collaboration diagram . 89
8.3 Pattern Structure . 90
8.4 Collaboration Contents .. . 92
8.5 Interactions . 93
8.6 Collaboration Roles . 94
8.7 Multiobject. 95
8.8 Active object . 96
8.9 Message flows . 98
8.10 Creation/destruction markers. .102

9. STATECHART DIAGRAMS 103

9.1 Statechart Diagram .. . 103
9.2 States . 104
9.3 Composite States . . . 106
9.4 Events . 108
9.5 Simple transitions . 111
9.6 Complex transitions .. . 113
9.7 Transitions to nested states . 114
9.8 Sending messages .. . 116
9.9 Internal transitions . 120
iv UML v 1.1, Notation Guide

Contents

 . 127

 .
 .

. . 138
10. ACTIVITY DIAGRAM 121

10.1 Activity diagram . 121
10.2 Action state . 123
10.3 Decisions . 124
10.4 Swimlanes . 125
10.5 Action-Object Flow Relationships .
10.6 Control Icons . 129

11. IMPLEMENTATION DIAGRAMS 132

11.1 Component diagrams. .. 132
11.2 Deployment diagrams .. 133
11.3 Nodes . 135
11.4 Components . 136
11.5 Location of Components and objects within objects.

INDEX 139
UML v 1.1, Notation Guide v

Contents
vi UML v 1.1, Notation Guide

Document Overview

 Lan-

tructs,

iagram
nd their
ram. An
 that the
es than
 are for-
ly but a

el ele-
nstructs;
ubsec-

f fine

map-

, such
 sug-
d the
xces-
ents

tation
itive
tation
ic tool
 of the
cting

 docu-

g con-
t that
++ or
 con-
1. DOCUMENT OVERVIEW

This document describes the notation for the visual representation of the Unified Modeling
guage (UML). This document should be used in conjunction with the companion UML Semantics
document. This notation document contains brief summaries of the semantics of UML cons
but the semantics document must be consulted for full details.

This document is arranged into chapters according to semantic concepts subdivided by d
types. Within each diagram type are listed model elements that are found on that diagram a
representation. Note, however, that many model elements are usable in more than one diag
attempt has been made to place each description where it is used the most, but be aware
document involves implicit cross-references and that elements may be useful in other plac
the chapter in which they are described. Be aware also that the document is nonlinear: there
ward references in it. It is not intended to be a teaching document that can be read linear
reference document organized by affinity of concept.

Each chapter is divided into numbered sections, roughly corresponding to important mod
ments and notational constructs. Note that some of these constructs are used within other co
do not be misled by the flattened structure of the chapter. Within each section the following s
tions may be found:

Semantics: Brief summary of semantics. For a fuller explanation and discussion o
points see the UML Semantics document.

Notation: Explains the notational representation of the semantic concept (“forward
ping to notation”).

Presentation options: Describes various options in presenting the model information
as the ability to suppress or filter information, alternate ways of showing things, and
gestions for alternate ways of presenting information within a tool. Dynamic tools nee
freedom to present information in various ways and we do not want to restrict this e
sively. In some sense, we are defining the “canonical notation” that printed docum
show, rather than the “screen notation”. We realize that the ability to extend the no
can lead to unintelligible dialects so we hope that this freedom will be used in intu
ways. We have not sought to eliminate all the ambiguity that some of these presen
options may introduce, because the presence of the underlying model in a dynam
serves to easily disambiguate things. Note that a tool is not supposed to pick just one
presentation options and implement it; tools should offer users the options of sele
among various presentation options, including some that are not described in this
ment.

Style guidelines: Suggestions for the use of stylistic markers, such as fonts, namin
ventions, arrangement of symbols, etc., that are not explicitly part of the notation bu
help to make diagrams more readable. These are similar to text indentation rules in C
Smalltalk. Not everyone will choose to follow these suggestions, but the use of some
sistent guidelines of your own choosing is recommended in any case.
UML v 1.1, Notation Guide 1

Document Overview

he fol-

 map-
antic
hich

at dia-
is con-
 a user
Example: Shows samples of the notation. String and code examples are given in t
lowing font: This is a string sample.

Mapping: Shows the mapping of notation elements to metamodel elements (“reverse
ping from notation”). This indicates how the notation would be represented as sem
information. Note that, in general, diagrams are interpreted in a particular context in w
semantic and graphic information is gathered simultaneously. The assumption is th
grams are constructed by an editing tool that internalizes the model as the diagram
structed. Some semantic constructs have no graphic notation and would be shown to
within a tool using a form or table.
2 UML v1.1, Notation Guide

Diagram Elements

e used in

 paths.
re are
kinds of
ent (of
nother
 parsed

nsional
onal sur-
esktop

s, 2-d

. Icons
 may or

things,
ilar or
on the
s con-

s a single
t exist
angling
f the

 usage
ation.
are sub-
ymbols
nveys

am.
2. DIAGRAM ELEMENTS

This chapter discusses mechanisms of the notation. These are generic mechanisms that ar
various ways in subsequent chapters to represent semantics.

2.1 GRAPHS AND THEIR CONTENTS

Most UML diagrams and some complex symbols are graphs containing nodes connected by
The information is mostly in the topology, not in the size or placement of the symbols (the
some exceptions, such as a sequence diagram with a metric time axis). There are three
visual relationships that are important: connection (usually of lines to 2-d shapes), containm
symbols by 2-d shapes with boundaries), and visual attachment (one symbol being “near” a
one on a diagram). These visual relationships map into connections of nodes in a graph, the
form of the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-dime
projections of 3-d shapes (such as cubes) but they are still rendered as icons on a 2-dimensi
face. In the near future true 3-dimensional layout and navigation may be possible on d
machines but it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation: icon
symbols, paths, and strings.

An icon is a graphical figure of a fixed size and shape; it does not expand to hold contents
may appear within area symbols, as terminators on paths, or as stand-alone symbols that
may not be connected to paths.

Two-dimensional symbols have variable height and width and they can expand to hold other
such as lists of strings or other symbols. Many of them are divided into compartments of sim
different kinds. Paths are connected to two-dimensional symbols by terminating the path
boundary of the symbol. Dragging or deleting a 2-d symbol affects its contents and any path
nected to it.

Paths are sequences of line segments whose endpoints are attached. Conceptually a path i
topological entity, although its segments may be manipulated graphically. A segment may no
apart from its path. Paths are always attached to other graphic symbols at both ends (no d
lines). Paths may have terminators, that is, icons that appear in some sequence on the end o
path and that qualify the meaning of the path symbol.

Strings present various kinds of information in an “unparsed” form. UML assumes that each
of a string in the notation has a syntax by which it can be parsed into underlying model inform
For example, syntaxes are given for attributes, operations, and transitions. These syntaxes
ject to extension by tools as a presentation option. Strings may exist as singular elements of s
or compartments of symbols, as elements in lists (in which case the position in the list co
information), as labels attached to symbols or paths, or as stand-alone elements on a diagr
UML v 1.1, Notation Guide 3

Diagram Elements

a single
ertain
ly for
gments
re a
dicate

ind may
the line
ath from
ntation
 used

creen,
ut that
l view

ponsi-
t
n the
ant to
tions

ld do so

 its own
erations
 attached
ntation

ation
forma-
2.2 DRAWING PATHS

A path consists of a series of line segments whose endpoints coincide. The entire path is
topological unit. Line segments may be orthogonal lines, oblique lines, or curved lines. C
common styles of drawing lines exist: all orthogonal lines, or all straight lines, or curves on
bevels. The line style can be regarded as a tool restriction on default line input. When line se
cross, it may be difficult to know which visual piece goes with which other piece; therefo
crossing may optionally be shown with a small semicircular jog by one of the segments to in
that the paths do not intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the same k
connect to a single symbol. In some circumstances (described for the particular relationship)
segments connected to the symbol can be combined into a single line segment, so that the p
that symbol branches into several paths in a kind of tree. This is purely a graphical prese
option; conceptually the individual paths are distinct. This presentation option may not be
when the modeling information on the segments to be combined is not identical.

2.3 INVISIBLE HYPERLINKS AND THE ROLE OF TOOLS

A notation on a piece of paper contains no hidden information. A notation on a computer s
however, may contain additional invisible hyperlinks that are not apparent in a static view, b
can be invoked dynamically to access some other piece of information, either in a graphica
or in a textual table. Such dynamic links are as much a part of a dynamic notation as the visible
information, but this document does not prescribe their form. We regard them as a tool res
bility. This document attempts to define a static notation for the UML, with the understanding tha
some useful and interesting information may show up poorly or not at all in such a view. O
other hand, we do not know enough to specify the behavior of all dynamic tools, nor do we w
stifle innovation in new forms of dynamic presentation. Eventually some of the dynamic nota
may become well enough established to standardize them, but we do not feel that we shou
now.

2.4 BACKGROUND INFORMATION

2.4.1 Presentation options

Each appearance of a symbol for a class on a diagram or on different diagrams may have
presentation choices. For example, one symbol for a class may show the attributes and op
and another symbol for the same class may suppress them. Tools may provide style sheets
either to individual symbols or to entire diagrams. The style sheets would specify the prese
choices. (Style sheets would be applicable to most kinds of symbols, not just classes.)

Not all modeling information is most usefully presented in a graphical notation. Some inform
is best presented in a textual or tabular format. For example, much detailed programming in
4 UML v1.1, Notation Guide

Diagram Elements

 model
oes not
because
ibility
 links

n about

ut the
erlying
 in par-
d the

charac-

layed
ending
tic line

f. They
ome of

 wrap-
ically.
tion is best presented as text lists. The UML does not assume that all of the information in a
will be expressed as diagrams; some of it may only be available as tables. This document d
attempt to prescribe the format of such tables or of the forms that are used to access them,
the underlying information is adequately described in the UML metamodel and the respons
for presenting tabular information is a tool responsibility. It is assumed, however, that hidden
may exist from graphical items to tabular items.

2.5 STRING

A string is a sequence of characters in some suitable character set used to display informatio
the model. Character sets may include non-Roman alphabets and characters.

2.5.1 Semantics

Diagram strings normally map underlying model strings that store or encode information abo
model, although some strings may exist purely on the diagrams. UML assumes that the und
character set is sufficient for representing multibyte characters in various human languages;
ticular, the traditional 8-bit ASCII character set is insufficient. It is assumed that the tool an
computer manipulate and store strings correctly, including escape conventions for special
ters, and this document will assume that arbitrary strings can be used without further fuss.

2.5.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be disp
directly. The display of nonprintable characters is unspecified and platform-dependent. Dep
on purpose, a string might be shown as a single-line entity or as a paragraph with automa
breaks.

Typeface and font size are graphic markers that are normally independent of the string itsel
may code for various model properties, some of which are suggested in this document and s
which are left open for the tool or the user.

2.5.3 Presentation options

Tools may present long strings in various ways, such as truncation to a fixed size, automatic
ping, or insertion of scroll bars. It is assumed that there is a way to obtain the full string dynam

2.5.4 Example

BankAccount

integrate (f: Function, from: Real, to: Real)
UML v 1.1, Notation Guide 5

Diagram Elements

ext. In
n oper-
mbol.

hname
int). A
or each

s kinds
limiter.

nd will
 on the
ose for
{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks, in which
blocks of cards may stick together during several riffles, the operation is actually simulated
by cutting the deck and merging the cards with an imperfect merge.

2.5.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on cont
some circumstances, the visual string is parsed into multiple model elements. For example, a
ation signature is parsed into its various fields. Further details are given with each kind of sy

2.6 NAME

2.6.1 Semantics

A name is a string that is used to uniquely identify a model element within some scope. A pat
is used to find a model element starting from the root of the system (or from some other po
name is a selector (qualifier) within some scope—the scope is made clear in this document f
element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::’). There are variou
of pathnames described in this document, each in its proper place and with its particular de

2.6.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single line a
not contain nonprintable characters. Tools and languages may impose reasonable limits
length of strings and the character set they use for names, possibly more restrictive than th
arbitrary strings such as comments.

2.6.3 Example

Names:

BankAccount

integrate

controller

abstract
6 UML v1.1, Notation Guide

Diagram Elements

Further

ttach-
ar the
ost of

xplicit
ith the
ould be
attach-
 unam-

ch as a
this_is_a_very_long_name_with_underscores

Pathname:

MathPak::Matrices::BandedMatrix.dimension

2.6.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with String.
details are given with the particular element.

2.7 LABEL

A label is a string that is attached to a graphic symbol.

2.7.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational term.

2.7.2 Notation

A label is a string that is graphically attached to another symbol on a diagram. Visually the a
ment is normally by containment of the string (in a closed region) or by placing the string ne
symbol. Sometimes the string is placed in a definite position (such as below a symbol) but m
the time the statement is that the string must be “near” the symbol. A tool maintains an e
internal graphic linking between a label and a graphic symbol, so that the label drags w
symbol, but the final appearance of the diagram is a matter of aesthetic judgment and sh
made so that there is no confusion about which symbol a label is attached to. Although the
ment may not be obvious from a visual inspection of a diagram, the attachment is clear and
biguous at the graphic level (and therefore poses no ambiguity in the semantic mapping).

2.7.3 Presentation options

A tool may visually show the attachment of a label to another symbol using various aids (su
line in a given color, flashing of matched elements, etc.) as a convenience.
UML v 1.1, Notation Guide 7

Diagram Elements

akes
model
nts. From
otypes is
nt the

ated as
es. The

n
s. UML
pressed
tic
guages)
2.7.4 Example

Figure 1. Attachment by containment and attachment by adjacency

2.8 KEYWORDS

The number of easily-distinguishable visual symbols is limited. The UML notation therefore m
use of text keywords in places to distinguish variations on a common theme, including meta
subclasses of a base class, stereotypes of a metamodel base class, and groups of list eleme
the user’s perspective, the metamodel distinction between metamodel subclasses and stere
often unimportant, although it is of course important to tool builders and others who impleme
metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):

«keyword»

Certain predefined keywords are described in the text of this document. These must be tre
reserved words in the notation. Others are available for users to employ as stereotype nam
use of a stereotype name that matches a predefined keyword is ill-formed.

2.9 EXPRESSION

2.9.1 Semantics

Various UML constructs require expressions, which are linguistic formulas that yield values whe
evaluated at run-time. These include expressions for types, boolean values, and number
does not include an explicit linguistic analyzer for expressions. Rather, expressions are ex
as strings in a particular language. The OCL constraint language is used within the UML seman
definition and may also be used at the user level; other languages (such as programming lan
may also be used.

BankAccount

account
8 UML v1.1, Notation Guide

Diagram Elements

guage-

as C++

g is the
e ana-
mantic
ates to a
ge itself
at the

ession,

 the
ssions
 (which

chained
 expres-
the OCL
UML avoids specifying the syntax for constructing type expressions because they are so lan
dependent. It is assumed that the name of a class or simple data type will map into a simpleClassi-
fier reference, but the syntax of complicated language-dependent type expressions, such
function pointers, is the responsibility of the specification language.

2.9.2 Notation

An expression is displayed as a string defined in a particular language; the syntax of the strin
responsibility of a tool and a linguistic analyzer for the language. The assumption is that th
lyzer can evaluate strings at run-time to yield values of the appropriate type, or can yield se
structures to capture the meaning of the expression. For example, a type expression evalu
Classifier reference, and a boolean expression evaluates to a true or false value. The langua
is known to a modeling tool but is generally implicit on the diagram, under the assumption th
form of the expression makes its purpose clear.

2.9.3 Example

BankAccount

BankAccount * (*) (Person*, int)

array [1..20] of reference to range (-1.0..1.0) of Real

[i > j and self.size > i]

2.9.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of Expr
such as ObjectSetExpression or TimeExpression).

2.9.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints within
UML metamodel itself. The OCL language may be supported by tools for user-written expre
as well. Other possible languages include various computer languages as well as plain text
cannot be parsed by a tool, of course, and is therefore only for human information).

2.9.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can be
together. The leftmost element must be an expression for an object or a set of objects. The
sions are meant to work on sets of values when applicable. For more details and syntax see
description.
UML v 1.1, Notation Guide 9

Diagram Elements

e of
f the
lues

ted
rray

e
ion is

ges).
s con-

itrary
ents by
item ‘.’ selector the selector is the name of an attribute in the item or the name of a rol
the target end of a link attached to the item. The result is the value o
attribute or the related object(s). The result is a value or a set of va
depending on the multiplicities of the item and the association.

item ‘.’ selector ‘[‘ qualifier-value ‘]’
the selector designates a qualified association that qualifies the item. The
qualifier-value is a value for the qualifier attribute. The result is the rela
object selected by the qualifier. Note that this syntax is applicable to a
indexing as a form of qualification.

set ‘−>’ ‘select’ ‘(‘ boolean-expression ‘)’
the boolean-expression is written in terms of objects within the set. Th
result is the subset of objects in the set for which the boolean express
true.

2.9.7 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employees−>select (title = “Manager” and self.reports−>size > 10)

2.10 NOTE

A note is a graphical symbol containing textual information (possibly including embedded ima
It is a notation for rendering various kinds of textual information from the metamodel, such a
straints, comments, method bodies, and tagged values.

2.10.1 Semantics

A note is a notational item. It show textual information within some semantic element.

2.10.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It contains arb
text. It appears on a particular diagrams and may be attached to zero or more modeling elem
dashed lines.

2.10.3 Presentation options

A note may have a stereotype.
10 UML v1.1, Notation Guide

Diagram Elements

 body
 view.

otation;

ust be
 in the
straint;
y also

partic-
-
one of
cribes.
per-

e, they
 pair of
number
inction
rlining
tion is
ntains
A note with the stereotype “constraint” or a more specific form of constraint (such as the code
for a method) designates a constraint that is part of the model and not just part of a diagram
Such a note is the view of a model element (the constraint). Other kinds of notes are purely n
they have no underlying model element.

2.10.4 Example

See also Section 4.1.3 for a note symbol containing a constraint.

Figure 2. Note

2.10.5 Mapping

A note may represent the textual information in several possible metamodel constructs; it m
created in context that is known to a tool, and the tool must maintain the mapping. The string
note maps to the body of the corresponding modeling element. A note may represent: a con
a tagged value; the body of a method; or other string values within modeling elements. It ma
represent a comment attached directly to a diagram element.

2.11 TYPE-INSTANCE CORRESPONDENCE

A major purpose of modeling is to prepare generic descriptions that describe many specific
ular items. This is often known as the type-instance dichotomy. Many or most of the modeling con
cepts in UML have this dual character, usually modeled by two paired modeling elements,
which represents the generic descriptor and the other of which the individual items that it des
Examples of such pairs in UML include: Class-Object, Association-Link, Parameter-Value, O
ation-Call, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly the sam
share many similarities. Therefore it is convenient to choose notation for each type-instance
elements such that the correspondence is immediately visually apparent. There are a limited
of ways to do this, each with advantages and disadvantages. In UML the type-instance dist
is shown by employing the same geometrical symbol for each pair of elements and by unde
the name string (including type name, if present) of an instance element. This visual distinc
generally easily apparent without being overpowering even when an entire diagram co
instance elements.

This model was built
by Alan Wright after
meeting with the
mission planning team.
UML v 1.1, Notation Guide 11

Diagram Elements

n, such
Figure 3. Classes and objects

A tool is free to substitute a different graphic marker for instance elements at the user’s optio
as color, fill patterns, or so on.

Point

x: Real
y: Real

rotate (angle: Real)
scale (factor: Real)

p1: Point

x = 3.14
y = 2.718

:Point

x = 1
y = 1.414
12 UML v1.1, Notation Guide

Model Management

r pack-
e pack-

a single
d dia-

ation
e, so the
sage net-

ocument
dels for
del ele-

er (usu-

e large

he tab.

s of
conflict

mple:

ame of
nt
3. MODEL MANAGEMENT

3.1 PACKAGES AND MODEL ORGANIZATION

3.1.1 Semantics

A package is a grouping of model elements. Packages themselves may be nested within othe
ages. A package may contain both subordinate packages and ordinary model elements. Som
ages may be Subsystems or Models. The entire system description can be thought of as
high-level subsystem package with everything else in it. All kinds of UML model elements an
grams can be organized into packages.

Note that packages own model elements and model fragments and are the basis for configur
control, storage, and access control. Each element can be directly owned by a single packag
package hierarchy is a strict tree. However, packages can reference other packages, so the u
work is a graph.

There are several predefined stereotypes of Model and Subsystem. See the metamodel d
for details. In particular, the stereotype «system» of Subsystem denotes the entire set of mo
the complete system being modeled; it is the root of the package hierarchy and the only mo
ment that is not owned by some other model element.

3.1.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached on one corn
ally the left side of the upper side of the large rectangle). It is a manila folder shape.

If contents of the package are not shown, then the name of the package is placed within th
rectangle.

If contents of the package are shown, then the name of the package may be placed within t

A keyword string may be placed above the package name. The keywords subsystem and model indi-
cate that the package is a metamodel Subsystem or Model. The predefined stereotypessystem,
facade, framework, and top package are also notated with keywords. User-defined stereotype
one of these predefined kinds of package are also notated with keywords, but they must not
with the predefined keywords.

A list of properties as may be placed in braces after or below the package name. Exa
{abstract}. See Section 4.2.2 for details of property syntax.

The contents of the package may be shown within the large rectangle.

The visibility of a package element outside the package may be indicated by preceding the n
the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#’ for protected). If the eleme
UML v 1.1, Notation Guide 13

Model Management

ined by
tself:

st some
ere exist

ibility

 which
is an inner package, the visibilities of its elements as exported by the outer package are obta
combining the visibilities of an element within the package with the visibility of the package i
the most restrictive visibility results.

Relationships may be drawn between package symbols to show relationships between at lea
of the elements in the packages. In particular, dependency between packages implies that th
one or more dependencies among the elements.

3.1.3 Presentation options

A tool may also show visibility by selectively displaying those elements that meet a given vis
level, e.g., all of the public elements only.

A tool may show visibility by a graphic marker, such as color or font.

3.1.4 Style guidelines

It is expected that packages with large contents will be shown as simple icons with names, in
the contents may be dynamically accessed by “zooming” to a detailed view.
14 UML v1.1, Notation Guide

Model Management

name of
package
type of

mbol)
me is a

eference
to rela-
3.1.5 Example

Figure 4. Packages and their dependencies

3.1.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is the
the Package element. If the package has a keyword that is a predefined keyword, then the
symbol maps into the corresponding subclass of Package or into the corresponding stereo
Package; otherwise it maps into a user-defined stereotype of Package.

A symbol directly contained within the package symbol (i.e., not contained within another sy
maps into a model element owned by the package element. However, a symbol whose na
pathname maps into a reference to a model element owned by another package; only the r
is owned by the current package. Relationships from the package symbol boundary map in
tionships to the package element.

Controller

Diagram
Elements

Windowing
System

Domain
Elements

Graphics
Core

Editor

Microsoft
Windows

Motif

WindowsCore

MotifCore

«subsystem »
UML v 1.1, Notation Guide 15

General Extension Mechanisms

odeling
retation
xtensi-

propo-
lid, with
associa-
traint
sibility.
 of it.

ctly to
“text”
smuch
ch arbi-

l tools
efined
 con-
ritten

man.
played

ng may

class):
ing ele-
traint
ment or
4. GENERAL EXTENSION MECHANISMS

The elements in this chapter are general purpose mechanisms that may be applied to any m
element. The semantics of a particular use depends on a convention of the user or an interp
by a particular constraint language or programming language, therefore they constitute an e
bility device for UML.

4.1 CONSTRAINT AND COMMENT

4.1.1 Semantics

A constraint is a semantic relationship among model elements that specifies conditions and
sitions that must be maintained as true (otherwise the system described by the model is inva
consequences that are outside the scope of UML). Certain kinds of constraints (such as an
tion “or” constraint) are predefined in UML, others may be user-defined. A user-defined cons
is described in words in a given language, whose syntax and interpretation is a tool respon
A constraint represents semantic information attached to a model element, not just to a view

A comment is a text string (including references to human-readable documents) attached dire
a model element. This is syntactically equivalent to a constraint written in the language
whose meaning is significant to humans but which is not conceptually executable (except ina
as humans are regarded as the instruments of interpretation). A comment can therefore atta
trary textual information to any model element of presumed general importance.

4.1.2 Notation

A constraint is shown as a text string in braces ({ }). There is an expectation that individua
may provide one or more languages in which formal constraints may be written. One pred
language for writing constraints is OCL (defined in a companion document). Otherwise the
straint may be written in natural language. A constraint may be a “comment”; it that case it is w
in text (possibly including pictures or other viewable documents) for “interpretation” by a hu
Each constraint is written in a specific language, although the language is not generally dis
on the diagram (the tool must keep track of it).

For an element whose notation is a text string (such as an attribute, etc.): The constraint stri
follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes within a
A constraint string may appear as an element in the list. The constraint applies to all succeed
ments of the list until another constraint string list element or the end of the list. A cons
attached to an individual list element does not supersede the general constraint but may aug
modify individual constraints within the constraint string.
16 UML v1.1, Notation Guide

General Extension Mechanisms

 may be

wn as a
s). The

ttached
or three

aint may

el ele-
erefore

nds
 a dia-
For a single graphical symbol (such as a class or an association path): The constraint string
placed near the symbol, preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations): The constraint is sho
dashed arrow from one element to the other element labeled by the constraint string (in brace
direction of the arrow is relevant information within the constraint.

For three or more graphical symbols: The constraint string is placed in a note symbol and a
to each of the symbols by a dashed line. This notation may also be used for the other cases. F
or more paths of the same kind (such as generalization paths or association paths) the constr
be attached to a dashed line crossing all of the paths.

A comment is shown by a text string placed within a note symbol that is attached to a mod
ment. The braces are omitted to show that this is purely a textual comment. (The braces th
indicate a constraint expressed in some interpretable constraint language.)

4.1.3 Example

Figure 5. Constraints

4.1.4 Mapping

The constraint string maps into the body expression in a Constraint element. The mapping depe
on the language of the expression, which is known to a tool but generally not displayed on

Member-of

Chair-of

{subset}Person Committee

Person Company

boss

{Person.employer =
Person.boss.employer}

employerworker employee

0..1

∗ ∗

∗

∗

∗ 0..1

1

Represents
an incorporated entity.
UML v 1.1, Notation Guide 17

General Extension Mechanisms

nguage

orre-

nstraint
il super-

en link
con-

lements

onding

dition,

perties
 tagged

ment,
achable

ent
 a
ments.
anism of
l edi-

gs but
ck-end
r their
gram. If the string lacks braces (i.e., a Comment), then it maps into an expression in the la
“text”.

A constraint string following a list entry maps into a Constraint attached to the element c
sponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate Co
attached to each succeeding model element corresponding to subsequent list entries (unt
seded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a hidd
by a tool operating in context. The tool must maintain the graphical linkage implicitly. The
straint string maps into a Constraint attached to the element corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the two e
corresponding to the symbols connected by the arrow.

A constraint string in a note symbol maps into a Constraint attached to the elements corresp
to the symbols connected to the note symbol by dashed lines.

4.2 ELEMENT PROPERTIES

Many kinds of elements have detailed properties that do not have a visual notation. In ad
users can define new element properties using the tagged value mechanism.

A string may be used to display properties attached to a model element. This includes pro
represented by attributes in the metamodel as well as both predefined and user-defined
values.

4.2.1 Semantics

Note that we use property in a general sense to mean any value attached to a model ele
including attributes, associations, and tagged values. In this sense it can include indirectly re
values that can be found starting at a given element.

A tagged value is a keyword-value pair that may be attached to any kind of model elem
(including diagram elements as well as semantic model elements). The keyword is calledtag.
Each tag represents a particular kind of property applicable to one or many kinds of model ele
Both the tag and the value are encoded as strings. Tagged values are an extensibility mech
UML permitting arbitrary information to be attached to models. It is expected that most mode
tors will provide basic facilities for defining, displaying, and searching tagged values as strin
will not otherwise use them to extend the UML semantics. It is expected, however, that ba
tools such as code generators, report writers, and the like will read tagged values to alte
semantics in flexible ways.
18 UML v1.1, Notation Guide

General Extension Mechanisms

limited

alue is
ord;
xplicit
rlying

.

races,
mple,
s italics

may be

 value
4.2.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-de
sequence of property specifications all inside a pair of braces ({ }).

A property specification has the form

keyword = value

where keyword is the name of a property (metamodel attribute or arbitrary tag) and value is an arbi-
trary string that denotes its value. If the type of the property is Boolean, then the default v
true if the value is omitted. (That is, to specify a value of true you may include just the keyw
to specify a value of false you omit the name completely.) Properties of other types require e
values. The syntax for displaying the value is a tool responsibility in cases where the unde
model value is not a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged values

4.2.3 Presentation options

A tool may present property specifications on separate lines with or without the enclosing b
provided they are appropriately marked to distinguish them from other information. For exa
properties for a class might be listed under the class name in a distinctive typeface, such a
or a different font family.

4.2.4 Style guidelines

It is legal to use strings to specify properties that have graphical notations but such usage
confusing and should be used with care.

4.2.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }

4.2.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a tagged
(predefined or user-defined). A tool must enforce the correspondence to built-in attributes.
UML v 1.1, Notation Guide 19

General Extension Mechanisms

ime. It
elation-
stereo-
de gen-
e of the

ce a key-
eotype
ther
ut it is
ouble

d string
e key-

 list ele-
t. Note
me ele-

phic
specify
porta-
 of or
nt that

orner of
ely, the
ame or
lement
ble but
sibility

ersons
hines).

) but
l forms
4.3 STEREOTYPES

4.3.1 Semantics

A stereotype is, in effect, a new class of modeling element that is introduced at modeling t
represents a subclass of an existing modeling element with the same form (attributes and r
ships) but with a different intent. Generally a stereotype represents a usage distinction. A
typed element may have additional constraints on it from the base class. It is expected that co
erators and other tools will treat stereotyped elements specially. Stereotypes represent on
built-in extensibility mechanisms of UML.

4.3.2 Notation

The general presentation of a stereotype is to use the symbol for the base element but to pla
word string above the name of the element (if any); the keyword string is the name of the ster
within matched guillemets, which are the quotation mark symbols used in French and certain o
languages, as for example: «foo». (Note that a guillemet looks like a double angle-bracket b
a single character in most extended fonts. Most computers have a Character Map utility. D
angle-brackets may be used as a substitute by the typographically challenged.) The keywor
is generally placed above or in front of the name of the model element being described. Th
word string may also be used as an element in a list, in which case it applies to subsequent
ments until another stereotype string replaces it, or an empty stereotype string («») nullifies i
that a stereotype name should not be identical to a predefined keyword applicable to the sa
ment type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a gra
marker (such as texture or color) can be associated with a stereotype. The UML does not
the form of the graphic specification, but many bitmap and stroked formats exist (and their
bility is a difficult problem). The icon can be used in one of two ways: it may be used instead
in addition to the stereotype keyword string as part of the symbol for the base model eleme
the stereotype is based on; for example, in a class rectangle it is placed in the upper right c
the name compartment. In this form, the normal contents of the item can be seen. Alternat
entire base model element symbol may be “collapsed” into an icon containing the element n
with the name above or below the icon. Other information contained by the base model e
symbol is suppressed. More general forms of icon specification and substitution are conceiva
we leave these to the ingenuity of tool builders, with the warning that excessive use of exten
capabilities may lead to loss of portability among tools.

UML avoids the use of graphic markers, such as color, that present challenges for certain p
(the color blind) and for important kinds of equipment (such as printers, copiers, and fax mac
None of the UML symbols require the use of such graphic markers. Users may use graphic markers
freely in their personal work for their own purposes (such as for highlighting within a tool
should be aware of their limitations for interchange and be prepared to use the canonica
when necessary.
20 UML v1.1, Notation Guide

General Extension Mechanisms

iagram;
rom an
reotype

ow the
el hier-
pability

t corre-
se of a

t corre-
l; a tool
 an icon
 created
nted by
The classification hierarchy of the stereotypes themselves could be displayed on a class d
however, this would be a metamodel diagram and must be distinguished (by user and tool) f
ordinary model diagram. In such a diagram each stereotype is shown as a class with the ste
«stereotype» (yes, this is a self-referential usage!). Generalization relationships may sh
extended metamodel hierarchy. Because of the danger of extending the internal metamod
archy, a tool may, but need not, expose this capability on class diagrams; this is not a ca
required by ordinary modelers

4.3.3 Example

Figure 6. Varieties of stereotype notation

4.3.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the Elemen
sponding to the symbol containing the name and the Stereotype of the given name. The u
stereotype icon within a symbol maps into the stereotype relationship between the Elemen
sponding to the symbol containing the icon and the Stereotype represented by the symbo
must establish the connection when the symbol is created and there is no requirement that
represent uniquely one stereotype. The use of a stereotype icon instead of a symbol must be
in a context in which a tool implies a corresponding model element and a Stereotype represe
the icon; the element and the stereotype have the stereotype relationship.

PenTracker
«control»

PenTracker

«control»

PenTracker

PenTracker

JobManager Scheduler
«calls»

location: Point

enable (Mode)

location: Point

enable (Mode)

location: Point

enable (Mode)
UML v 1.1, Notation Guide 21

Static Structure Diagrams

uch as
rams do
t have
 with a

ses, and
 classes:

ships.
d even
am” but

ms do

erfaces,
ams may
at build

e static
entation
 model
 is part
5. STATIC STRUCTURE DIAGRAMS

Class diagrams show the static structure of the model, in particular, the things that exist (s
classes and types), their internal structure, and their relationships to other things. Class diag
not show temporal information, although they may contain reified occurrences of things tha
or things that describe temporal behavior. An object diagram shows instances compatible
particular class diagram.

This chapter includes classes and their variations, including templates and instantiated clas
the relationships between classes: association and generalization. It includes the contents of
attributes and operations.

5.1 CLASS DIAGRAM

A class diagram is a graph of Classifier elements connected by their various static relation
(Note that a “class” diagram may also contain interfaces, packages, relationships, an
instances, such as objects and links. Perhaps a better name would be “static structural diagr
“class diagram” is shorter and well established.)

5.1.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class diagra
not represent divisions in the underlying model.

5.1.2 Notation

A class diagram is a collection of (static) declarative model elements, such as classes, int
and their relationships, connected as a graph to each other and to their contents. Class diagr
be organized into packages either with their underlying models or as separate packages th
upon the underlying model packages.

5.1.3 Mapping

A class diagram does not necessarily match a single semantic entity. A package within th
structural model may be represented by one or more class diagrams; the division of the pres
into separate diagrams is for graphical convenience and does not imply a partitioning of the
itself. The contents of a diagram map into elements in the static semantic model. If a diagram
of a package, then its contents map into elements in the same package.
22 UML v1.1, Notation Guide

Static Structure Diagrams

iagram
 point in
s.

 objects,
owever,

cessary.
 a class,
he
man-

 UML
sses in
es, sig-
te meta-
 and used
as well
.

ture and

must be

es. The
ding ste-
5.2 OBJECT DIAGRAM

An object diagram is a graph of instances, including objects and data values. A static object d
is an instance of a class diagram; it shows a snapshot of the detailed state of a system at a
time. The use of object diagrams is fairly limited, mainly to show examples of data structure

Tools need not support a separate format for object diagrams. Class diagrams can contain
so a class diagram with objects and no classes is an “object diagram.” The phrase is useful, h
to characterize a particular usage achievable in various ways.

5.3 CLASSIFER

Classifier is the metamodel superclass of Class, DataType, and Interface. All of these have similar
syntax and are therefore all notated using the rectangle symbol with keywords used as ne
Because classes are most common in diagrams, a rectangle without a keyword represents
and the other subclasses of Classifier are indicated with keywords. In the sections that follow, t
discussion will focus on Class, but most of the notation applies to the other element kinds as se
tically appropriate and as described later under their own sections.

5.4 CLASS

A class is the descriptor for a set of objects with similar structure, behavior, and relationships.
provides notation for declaring classes and specifying their properties, as well as using cla
various ways. Some modeling elements that are similar in form to classes (such as interfac
nals, or utilities) are notated using keywords on class symbols; some of these are separa
model classes and some are stereotypes of Class. Classes are declared in class diagrams
in most other diagrams. UML provides a graphical notation for declaring and using classes,
as a textual notation for referencing classes within the descriptions of other model elements

5.4.1 Semantics

A class represents a concept within the system being modeled. Classes have data struc
behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name
unique (among class names) within its package.

5.4.2 Basic notation

A class is drawn as a solid-outline rectangle with 3 compartments separated by horizontal lin
top name compartment holds the class name and other general properties of the class (inclu
UML v 1.1, Notation Guide 23

Static Structure Diagrams

 holds

 that

mbiguity,
 names

r line is
 drawn

r user-
 events
ompli-

sibility.
artment

eclara-

ith the
pressed.
reotype); the middle list compartment holds a list of attributes; the bottom list compartment
a list of operations.

See the sections on Name Compartment and List Compartment for more details.

References. By default a class shown within a package is assumed to be defined within
package. To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. Compartment names can be used to remove a
if necessary (Section 5.6.1). A full pathname can be specified by chaining together package
separated by double colons (::).

5.4.3 Presentation options

Either or both of the attribute and operation compartments may be suppressed. A separato
not drawn for a missing compartment. If a compartment is suppressed, no inference can be
about the presence or absence of elements in it.

Additional compartments may be supplied as a tool extension to show other predefined o
defined model properties, for example, to show business rules, responsibilities, variations,
handled, exceptions raised, and so on. Most compartments are simply lists of strings. More c
cated formats are possible, but UML does not specify such formats; they are a tool respon
Appearance of each compartment should preferably be implicit based on its contents. Comp
names may be used if needed.

Tools may provide other ways to show class references and to distinguish them from class d
tions.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, w
name of the class either inside the class or below the icon. Other contents of the class are sup

5.4.4 Style guidelines

(Note that these are recommendations, not mandates.)

Center class name in boldface.

Center stereotype name in plain face within guillemets above class name.

Being class names with an uppercase letter.

Left justify attributes and operations in plain face.

Begin attribute and operation names with a lowercase letter.
24 UML v1.1, Notation Guide

Static Structure Diagrams

 desig-
led as a

rences.

ls

e name
utes or
eration
Show the names of abstract classes or the signatures of abstract operations in italics

As a tool extension, boldface may be used for marking special list elements, for example, to
nate candidate keys in a database design. This might encode some design property mode
tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts or refe

5.4.5 Example

Figure 7. Class notation: details suppressed, analysis-level details, implementation-level detai

5.4.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram. Th
compartment contents map into the class name and into properties of the class (built-in attrib
tagged values). The attribute compartment maps into a list of Attributes of the Class. The op
compartment maps into a list of Operations of the Class.

5.5 NAME COMPARTMENT

5.5.1 Notation

Displays the name of the class and other properties in up to 3 sections:

Window

display ()

size: Area
visibility: Boolean

hide ()

Window

Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = invisible

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}
UML v 1.1, Notation Guide 25

Static Structure Diagrams

nd/or a
e name

note that

 braces
tation
a value

es of the

attribute
endent
f pre-
 does

he ele-
e used
 in a dif-
me way.
An optional stereotype keyword may be placed above the class name within guillemets, a
stereotype icon may be placed in the upper right corner of the compartment. The stereotyp
must not match a predefined keyword.

The name of the class appears next. If the class is abstract, its name appears in italics. But
any explicit specification of generalization status take precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be placed in
below the class name. The list may show class-level attributes for which there is no UML no
and it may also show tagged values. The presence of a keyword for a Boolean type without
implies the value true. For example, a leaf class shows the property “{leaf}”.

The stereotype and property list are optional.

Figure 8. Name compartment

5.5.2 Mapping

The contents of the name compartment map into the name, stereotype, and various properti
Class represented by the class symbol.

5.6 LIST COMPARTMENT

5.6.1 Notation

Holds a list of strings, each of which is the encoded representation of a feature, such as an
or operation. The strings are presented one to a line with overflow to be handled in a tool-dep
manner. In addition to lists of attributes or operations, optional lists can show other kinds o
defined or user-defined values, such as responsibilities, rules, or modification histories; UML
not define these optional lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order of t
ments is meaningful information and must be accessible within tools. For example, it may b
by a code generator in generating a list of declarations. The list elements may be presented
ferent order, however, to achieve some other purpose. For example, they may be sorted in so

PenTracker

«controller»

{ leaf, author=”Mary Jones”}
26 UML v1.1, Notation Guide

Static Structure Diagrams

odel;

a list
ut that

plies
 This is
perty
reotype

quent

ent
 capa-
ts are

s

 of the
ditional
uch as
cted,

 selec-
ments
lements
le ele-
cal or
g if it

of its ele-
Even if the list is sorted, however, the items maintain their original order in the underlying m
the ordering information is merely suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited section of
indicates that there exist additional elements in the model that meet the selection condition b
are not shown in that list. Such elements may appear in a different view of the list.

Group properties: A property string may be shown as a element of the list, in which case it ap
to all of the succeeding list elements until another property string appears as a list element.
equivalent to attaching the property string to each of the list elements individually. The pro
string does not designate a model element. Examples of this usage include indicating a ste
and specifying visibility. Keyword strings may also be used in a similar way to qualify subse
list elements.

Compartment name. A compartment may display a name to indicate which kind of compartm
it is. The name is displayed in a distinctive font centered at the top of the compartment. This
bility is useful if some compartments are omitted or if additional user-defined compartmen
added. For a Class, the predefined compartments are named attributes and operations. An
example of a user-defined compartment might be requirements. The name compartment in a clas
must always be present and therefore does not require or permit a compartment name.

5.6.2 Presentation options

A tool may present the list elements in a sorted order, in which case the inherent ordering
elements is not visible. A sort is based on some internal property and does not indicate ad
model information. Example sort rules include alphabetical order, ordering by stereotype (s
constructors, destructors, then ordinary methods), ordering by visibility (public, then prote
then private), etc.

The elements in the list may be filtered according to some selection rule. The specification of
tion rules is a tool responsibility. The absence of items from a filtered list indicates that no ele
meet the filter criterion, but no inference can be drawn about the presence or absence of e
that do not meet the criterion (however, the ellipsis notation is available to show that invisib
ments exist). It is a tool responsibility whether and how to indicate the presence of either lo
global filtering, although a stand-alone diagram should have some indication of such filterin
is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absence
ments. An empty compartment indicates that no elements meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 25).
UML v 1.1, Notation Guide 27

Static Structure Diagrams
5.6.3 Example

Figure 9. Stereotype keyword applied to groups of list elements

Figure 10. Compartments with names

«constructor»
Rectangle(p1:Point, p2:Point)
«query»
area (): Real
aspect (): Real

«update»
move (delta: Point)
scale (ratio: Real)
. . .

. . .

Rectangle

p1:Point
p2:Point

bill no-shows

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card
28 UML v1.1, Notation Guide

Static Structure Diagrams

. The
ment is
 made
otype
arate
nt until
ecifica-
ternal
mplies
not vis-

arame-

 intent

mplex,
spec-
ion or

ttribute
5.6.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list entry
ordering of the ModelElements matches the list compartment entries unless the list compart
sorted in some way), in which case no implication about the ordering of the Elements can be
(the ordering can be seen by turning off sorting). However, a list entry string that is a stere
indication (within guillemets) or a property indication (within braces) does not map into a sep
ModelElement. Instead the corresponding property applies to each subsequent ModelEleme
the appearance of a different stand-alone stereotype or property indicator.The property sp
tions are conceptually duplicated for each list Element, although a tool might maintain an in
mechanism to store or modify them together. The presence of an ellipsis (“...”) as a list entry i
that the semantic model contains at least one Element with corresponding properties that is
ible in the list compartment.

5.7 ATTRIBUTE

Used to show attributes in classes. A similar syntax is used to specify qualifiers, template p
ters, operation parameters, and so on (some of these omit certain terms).

5.7.1 Semantics

Note that an attribute is semantically equivalent to a composition association. However, the
and usage is normally different.

The type of an attribute is a TypeExpression. It may resolve to a class name or it may be co
such as array[String] of Point. In any case, the details of the attribute type expressions are not
ified by UML; they depend on the expression syntax supported by the particular specificat
programming language being used.

5.7.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an a
model element. The default syntax is:

visibility name : type-expression = initial-value { property-string }

where visibility is one of:

+ public visibility

protected visibility

- private visibility
UML v 1.1, Notation Guide 29

Static Structure Diagrams

indi-
ool
The

entire

es,

 by a

e of

 cre-
con-

erty

ise the
stance

nated by

hange-

 indi-

e, as
 a dis-

 indi-
The visibility marker may be suppressed. The absence of a visibility marker
cates that the visibility is not shown (not that it is undefined or public). A t
should assign visibilities to new attributes even if the visibility is not shown.
visibility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form
is particularly used when used as an inline list element that applies to an
block of attributes.

Additional kinds of visibility might be defined for certain programming languag
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or
tool-specific convention.

where name is an identifier string that represents the name of the attribute;

where type-expression is a language-dependent specification of the implementation typ
an attribute;

where initial-value is a language-dependent expression for the initial value of a newly
ated object. The initial value is optional (the equal sign is also omitted). An explicit
structor for a new object may augment or modify the default initial value;

where property-string indicates property values that apply to the element. The prop
string is optional (the braces are omitted if no properties are specified);

A class-scope attribute is shown by underlining the name and type expression string; otherw
attribute is instance-scope. The notation justification is that a class-scope attribute is an in
value in the executing system, just as an object is an instance value, so both may be desig
underlining. An instance-scope attribute is not underlined; that is the default.

class-scope-attribute

There is no symbol for whether an attribute is changeable (the default is changeable). A nonc
able attribute is specified with the property “{frozen}”.

In the absence of a multiplicity indicator an attribute holds exactly 1 value. Multiplicity may be
cated by placing a multiplicity indicator in brackets after the attribute name, for example:

colors [3]: Color
points [2..*]: Point

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence of a valu
opposed to a particular value from the range. For example, the following declaration permits
tinction between the null value and the empty string:

name [0..1]: String

A stereotype keyword in guillemets precedes the entire attribute string, including any visibility
cators. A property list in braces follows the entire attribute string.
30 UML v1.1, Notation Guide

Static Structure Diagrams

sibility

or by

ing.

 C++ or

nting
ions. If
 filter

. The
sion of

n the
ation
5.7.3 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool respon
whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon
sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a continuous str

The syntax of the attribute string can be that of a particular programming language, such as
Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see List Compartment).

5.7.4 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.

5.7.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

5.7.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class represe
the class symbol. The properties of the attribute map in accord with the preceding descript
the visibility is absent, then no conclusion can be drawn about the Attribute visibilities unless a
is in effect (e.g., only public attributes shown). Likewise if the type or initial value are omitted
omission of an underline always indicates an instance-scope attribute, however. The omis
multiplicity denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties o
Attribute. In addition, any properties specified on a previous stand-alone property specific
entry apply to the current Attribute (and to others).
UML v 1.1, Notation Guide 31

Static Structure Diagrams

es.

 a name

eration

indi-
isi-

ntire

es,

 by a

tion
 oper-
icate

sing
5.8 OPERATION

Used to show operations defined on classes. Also used to show methods supplied by class

5.8.1 Operation

An operation is a service that an instance of the class may be requested to perform. It has
and a list of arguments.

5.8.2 Notation

An operation is shown as a text string that can be parsed into the various properties of an op
model element. The default syntax is:

visibility name (parameter-list) : return-type-expression { property-string }

where visibility is one of:

+ public visibility

protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker
cates that the visibility is not shown (not that it is undefined or public). The v
bility marker is a shorthand for a full visibility property specification string.

Visibility may also be specified by keywords (public, protected, private). This form
is particularly used when used as an inline list element that applies to an e
block of operations.

Additional kinds of visibility might be defined for certain programming languag
such as C++ implementation visibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or
tool-specific convention.

where name is an identifier string;

where return-type-expression is a language-dependent specification of the implementa
type or types of the value returned by the operation. If the return-type is omitted if the
ation does not return a value (C++ void). A list of expressions may be supplied to ind
multiple return values.

where parameter-list is a comma-separated list of formal parameters, each specified u
the syntax:

kind name : type-expression = default-value
32 UML v1.1, Notation Guide

Static Structure Diagrams

en-

d in

erty

stance-

d by the
 guar-

names:
 are

therefore
es not

re may
nature
tion of
 nota-

 entry.

al. The

t of the
ge (a

tion of

ibility
where kind is in, out, or inout, with the default in if absent;

where name is the name of a formal parameter;

where type-expression is the (language-dependent) specification of an implem
tation type;

where default-value is an optional value expression for the parameter, expresse
and subject to the limitations of the eventual target language;

where property-string indicates property values that apply to the element. The prop
string is optional (the braces are omitted if no properties are specified);

A class-scope operation is shown by underlining the name and type expression string. An in
scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is specifie
property “{query}”; otherwise the operation may alter the system state, although there is no
antee that it will do so.

The concurrency semantics of an operation are specified by a property string with one of the
sequential, guarded, concurrent. In the absence of a specification the concurrency semantics
undefined and must be assumed to be sequential in the worst case.

The top-most appearance of an operation signature declares the operation on the class (and
inherited by all of its descendents). If this class does not implement the operation (i.e., do
supply a method) then the operation may be marked as “{abstract}” or the operation signatu
be italicized to indicate that it is abstract. Any subordinate appearances of the operation sig
indicate that the subordinate class implements a method on the operation. (The specifica
“{abstract}” or italics on a subordinate class would not indicate a method but this usage of the
tion would be poor form.)

The actual text or algorithm of a method may be indicated in a note attached to the operation

An operation entry with the stereotype «signal» indicates that the class accepts the given sign
syntax is identical to that of an operation.

The specification of operation behavior is given as a note attached to the operation. The tex
specification should be enclosed in braces if it is a formal specification in some langua
semantic Constraint), otherwise it should be plain text if it is just a natural-language descrip
the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any vis
indicators. A property list in braces follows the entire operation string.

5.8.3 Presentation options

The argument list and return type may be suppressed (together, not separately).
UML v 1.1, Notation Guide 33

Static Structure Diagrams

or by

e, such

in the
he pre-

eration
s, each
g Class,
uch as
ich the
nless the

sing the
ception
A tool may show the visibility indication in a different way, such as by using a special icon
sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming languag
as C++ or Smalltalk. Specific tagged properties may be included in the string.

5.8.4 Style guidelines

Operation names typically begin with a lowercase letter.

Operation names in plain face.

An abstract operation may be shown in italics.

5.8.5 Example

Figure 11. Operation list with a variety of operations

5.8.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method with
Class representing the class symbol. The properties of the operation map in accord with t
ceding descriptions. See the description of Attribute for additional details.

The topmost appearance of an operation specification in a class hierarchy maps into an Op
definition in the corresponding Class or Interface. Interfaces do not have methods. In a Clas
appearance of an operation entry maps into the presence of a Method in the correspondin
unless the operation entry contains the {abstract} property (including use of conventions s
italics for abstract operations).If an abstract operation entry appears within a hierarchy in wh
same operation has already been defined in an ancestor, it has no effect but is not an error u
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.

5.8.7 Signal reception

If the objects of a class accept and respond to a given signal, that fact can be indicated u
same syntax as an operation with the keyword «signal». The response of the object to the re

+create ()

+display (): Location
+hide ()

-attachXWindow(xwin:Xwindow*)
34 UML v1.1, Notation Guide

Static Structure Diagrams

sponse
.

gh they
ct may
 proce-
t may
ich is
ucture
subclass
socia-

otype
 tool
mbols
ht be

onship,
). This
of the signal is shown with a state machine. Among other uses, this notation can show the re
of objects of a class to error conditions and exceptions, which should be modeled as signals

5.9 TYPE VS. IMPLEMENTATION CLASS

5.9.1 Semantics

Classes can be specialized by stereotypes into Types and Implementation Classes (althou
can be left undifferentiated as well). A Type characterizes a changeable role that an obje
adopt and later abandon. An Implementation Class defines the physical data structure and
dures of an object as implemented in traditional languages (C++, Smalltalk, etc.). An objec
have multiple Types (which may change dynamically) but only one ImplementationClass (wh
fixed). Although the usage of Types and ImplementationClasses is different, their internal str
is the same, so they are modeled as stereotypes of Class. All kinds of Class require that a
fully support the features of the superclass, including support for all inherited attributes, as
tions, and operations.

5.9.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the stere
“«type»”. An implementation class is shown with the stereotype “«implementation class»”. A
is also free to allow a default setting for an entire diagram, in which case all of the class sy
without explicit stereotype indications map into Classes with the default stereotype; this mig
useful for a model that is close to the programming level.

The implementation of a type by an implementation class is modeled as the Realizes relati
shown as a dashed line with a solid triangular arrowhead (a dashed “generalization arrow”
symbol implies inheritance of operations but not of structure (attributes or associations).
UML v 1.1, Notation Guide 35

Static Structure Diagrams

Class
ith the

erwise
n inter-
s only

 entity
. Each
t have
5.9.3 Example

Figure 12. Notation for types and implementation classes

5.9.4 Mapping

A class symbol with a stereotype (including “type” and “implementation class”) maps into a
with the corresponding stereotype. A class symbol without a stereotype maps into a Class w
default stereotype for the diagram (if a default has been defined by the modeler or tool), oth
it maps into a Class with no stereotype. This symbol is normally used between a class and a
face but may also be used between any two classifiers to show inheritance of operation
without inheritance of attributes or associations.

5.10 INTERFACES

5.10.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component, or other
(including summarization units such as packages) without specification of internal structure
interface often specifies only a limited part of the behavior of an actual class. Interfaces do no

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

elements: Collection

Collection
«type»

HashTableSet
«implementation class»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

elements: Collection

HashTable
«implementation class»

setTableSize(Integer)
36 UML v1.1, Notation Guide

Static Structure Diagrams

erfaces
s with

ithin the

part-
 in the
pty.

low the
r-level
es all of

own on
ses or
d arrow
rations

ine with
sed to

etween
pports
ith no
implementation; they lack attributes, states, or associations; they only have operations. Int
may have generalization relationships. An interface is formally equivalent to an abstract clas
no attributes and no methods and only abstract operations, but Interface is a peer of Class w
UML metamodel; both are Classifiers.

5.10.2 Notation

An interface is a Classifer and may also be shown using the full rectangle symbol with com
ments and the keyword «interface». A list of operations supported by the interface is placed
operation compartment. The attribute compartment may be omitted because it is always em

An interface may also be displayed as a small circle with the name of the interface placed be
symbol. The circle may be attached by a solid line to classes that support it (also to highe
containers, such as packages that contain the classes). This indicates that the class provid
the operations in the interface type (and possibly more). The operations provided are not sh
the circle notation; use the full rectangle symbol to show the list of operations. A class that u
requires the operations supplied by the interface may be attached to the circle by a dashe
pointing to the circle. The dashed arrow implies that the class requires no more than the ope
specified in the interface; the client class is not required to actually use all of the interface opera-
tions.

The Realizes relationship from a class to an interface that it supports is shown by a dashed l
a solid triangular arrowhead (a “dashed generalization symbol”). This is the same notation u
indicate realization of a type by an implementation class. In fact, this symbol can be used b
any two classifier symbols, with the meaning that the client (the one at the tail of the arrow) su
at least all of the operations defined in the supplier (the one at the head of the arrow), but w
necessity to support any of the data structure of the supplier (attributes and associations).
UML v 1.1, Notation Guide 37

Static Structure Diagrams

into an
l maps

ecting
een the
n inter-

ce.

refore
s. Typi-
types, or
5.10.3 Example

Figure 13. Interface notation on class diagram

5.10.4 Mapping

A class rectangle symbol with stereotype «interface» or a circle on a class diagram maps
Interface element with the name given by the symbol. The operation list of a rectangle symbo
into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol or a solid line conn
a class symbol and an interface circle maps into a realization-specification relationship betw
corresponding Class and Interface elements. A dependency arrow from a class symbol to a
face symbol maps into a «uses» dependency between the corresponding Class and Interfa

5.11 PARAMETERIZED CLASS (TEMPLATE)

5.11.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It the
defines a family of classes, each class specified by binding the parameters to actual value
cally the parameters represent attribute types, but they can also represent integers, other

HashTable

Hashable

Comparable

String
. . .

isEqual(String):Boolean
hash():Integer

contents*

Comparable
«interface»

isEqual(String):Boolean
hash():Integer

. . .

«uses»
38 UML v1.1, Notation Guide

Static Structure Diagrams

formal

 must be
ss or the
,
med by

 entire
ts in the

 for the
rameter

empty,
s of the
urrences
 context

er, such
even operations. Attributes and operations within the template are defined in terms of the
parameters so they too become bound when the template itself is bound to actual values.

A template is not a directly-usable class because it has unbound parameters. Its parameters
bound to actual values to create a bound form that is a class. Only a class can be s supercla
target of an association (a one-way association from the template to another class is permissible
however). A template may be a subclass of an ordinary class; this implies that all classes for
binding it are subclasses of the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or even
Packages.The description given here for classes applies to other kinds of modeling elemen
obvious way.

5.11.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle
class (or to the symbol for another modeling element). The dashed rectangle contains an pa
list of formal parameters for the class and their implementation types. The list must not be
although it might be suppressed in the presentation. The name, attributes, and operation
parameterized class appear as normal in the class rectangle, but they may also include occ
of the formal parameters. Occurrences of the formal parameters can also occur inside of a
for the class, for example, to show a related class identified by one of the parameters

5.11.3 Presentation options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, shown as strings with the syntax

name : type

where name is an identifier for the parameter with scope inside the template;

where type is a string designating a TypeExpression for the parameter.

If the type name is omitted, it is assumed to be a type expression that resolves to a classifi
as a class name or a data type. Other parameter types (such as Integer) must be explicitly shown;
they must resolve to valid type expressions.
UML v 1.1, Notation Guide 39

Static Structure Diagrams

ames in
e base
 to the

ciation,
arameter.
ch
f a tem-
ding the
to corre-
5.11.4 Example

Figure 14. Template notation with use of parameter as a reference

5.11.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the parameter n
the list as ModelElements within the Namespace of the ModelElement corresponding to th
symbol. Each of the parameter ModelElements has the templateParameter association
Namespace.

5.12 BOUND ELEMENT

5.12.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or asso
because it has a free parameter that is not meaningful outside of a scope that declares the p
To be used, a template’s parameters must be bound to actual values. The actual value for ea
parameter is an expression defined within the scope of use. If the referencing scope is itsel
plate, then the parameters of the referencing template can be used as actual values in bin
referenced template, but the parameter names in the two templates cannot be assumed
spond, because they have no scope outside of their respective templates.

FArray

FArray<Point,3>

T,k:Integer

«bind» (Address,24)

T
k..k

AddressList
40 UML v1.1, Notation Guide

Static Structure Diagrams

ameters

zed kind
lass dia-

ot be
ple, but

n by a
es after

because

ndency
t symbol
rt of the
r if the
he tem-
lement
5.12.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follows:

Template-name ‘<‘ value-list ‘>’

where value-list is a comma-delimited non-empty list of value expressions;

where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and types of the values must match the number and types of the template par
for the template of the given name.

The bound element name may be used anywhere that an element name of the parameteri
could be used. For example, a bound class name could be used within a class symbol on a c
gram, as an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template, therefore its content may n
extended; declaration of new attributes or operations for classes is not permitted, for exam
a bound class could be subclassed and the subclass extended in the usual way.

The relationship between the bound element and its template may alternatively be show
Dependency relationship with the keyword «bind». The arguments are shown in parenthes
the keyword. In this case the bound form may be given a name distinct from the template.

5.12.3 Style guidelines

The attribute and operation compartments are normally suppressed within a bound class,
they must not be modified in a bound template.

5.12.4 Example

See Figure 14.

5.12.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding depe
between the dependent ModelElement (such as Class) corresponding to the bound elemen
and the provider ModelElement (again, such as Class) whose name matches the name pa
bound element without the arguments. If the name does not match a template element o
number of arguments in the bound element does not match the number of parameters in t
plate, then the model is ill formed. Each argument in the bound element maps into a ModelE
UML v 1.1, Notation Guide 41

Static Structure Diagrams

ng rela-

his is
s of the
s.

d oper-
use the

 which

e.
bearing a templateArgument association to the Namespace of the bound element. The Bindi
tionship bears the list of actual argument values.

5.13 UTILITY

A utility is a grouping of global variables and procedures in the form of a class declaration. T
not a fundamental construct but a programming convenience. The attributes and operation
utility become global variables and procedures. A utility is modeled as a stereotype of a clas

5.13.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attributes an
ations. It is inappropriate for a utility to declare class-scope attributes and operations beca
instance-scope members are already interpreted as being at class scope.

5.13.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operations, all of
are treated as global attributes and operations.

5.13.3 Example

Figure 15. Notation for utility

5.13.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility» stereotyp

MathPak
«utility»

sin (Angle): Real

sqrt (Real): Real
random(): Real

cos (Angle): Real
42 UML v1.1, Notation Guide

Static Structure Diagrams

otype.

 to other
 class, in

ons for
ing the

 expres-
5.14 METACLASS

5.14.1 Semantics

A metaclass is a class whose instances are classes.

5.14.2 Notation

Shown as the stereotype «metaclass» of Class.

5.14.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass» stere

5.15 CLASS PATHNAMES

5.15.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationships
classes. A reference to a class in a different package is notated by using a pathname for the
the form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specificati
attributes and variables. In these places a reference to a class is indicated by simply includ
name of the class itself, including a possible package name, subject to the syntax rules of the
sion.
UML v 1.1, Notation Guide 43

Static Structure Diagrams

he given
e target
ckage
ackage

ndency
or pack-
e ref-
ent is

ombine
ble to
ckage
d levels
equires

er way
lso that
5.15.2 Example

Figure 16. Pathnames for classes in other packages

5.15.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class with t
name inside the package with the given name. The name is assumed to be defined in th
package, otherwise the model is ill formed. A Relationship from a symbol in the current pa
(i.e., the package containing the diagram and its mapped elements) to a symbol in another p
is part of the current package.

5.16 IMPORTING A PACKAGE

5.16.1 Semantics

A class in another package may be referenced. On the package level, the «imports» depe
indicates that the contents of the target packages may be referenced by the client package
ages recursively embedded within it. The target references must have visibility sufficient for th
erents. Visibilities may be specified on model elements and on packages. If a model elem
nested inside one or more packages, the visibilities of the element and all of its containers c
according to the rule that the most restrictive visibility in the set is obtained. It is not possi
selectively export certain elements from within a nested package; the visibility of the outer pa
is applied to each element exported by an inner package. Imports are recursive within neste
of packages. A descendent of a class requires at least “protected” visibility; any other class r
“public” visibility. (See the semantics document for full details.)

Note that an imports dependency does not modify the namespace of the client or in any oth
automatically create references; it merely grants permission to establish references. Note a

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash
44 UML v1.1, Notation Guide

Static Structure Diagrams

 are cre-

ackage
reotype

erence
by the
 grants

en the
a tool could automatically create imports dependencies for users if desired when references
ated.

5.16.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing (client) p
to the target (supplier) package containing the target of the references. The arrow has the ste
«import». This dependency indicates that elements within the client package may legally ref
elements within the supplier. The references must also satisfy visibility constraints specified
supplier. Note that the dependency does not automatically create any references; it merely
permission for them to be established.

5.16.3 Example

Figure 17. Imports dependency among packages

5.16.4 Mapping

This is not a special symbol. It maps into a Dependency with the stereotype «import» betwe
two packages.

Banking::CheckingAccount

CheckingAccount

Banking

«import»

Customers
UML v 1.1, Notation Guide 45

Static Structure Diagrams

e same
acteris-

nts, as

yntax:

e names

r as an
 class.

snames.
ss per-

tly.

h value

xpres-
age.
5.17 OBJECT

5.17.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values. Th
notation also represents a role within a collaboration because roles have instance-like char
tics.

5.17.2 Notation

The object notation is derived from the class notation by underlining instance-level eleme
explained in the general comments in Section 2.11.

An object shown as a rectangle with two compartments.

The top compartment shows the name of the object and its class, all underlined, using the s

objectname : classname

The classname can include a full pathname of enclosing package, if necessary. The packag
precede the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window
A stereotype for the class may be shown textually (in guillemets above the name string) o
icon in the upper right corner. The stereotype for an object must match the stereotype for its

To show multiple classes that the object is an instance of, use a comma-separated list of clas
These classnames must be legal for multiple classification (i.e., only one implementation cla
mitted but multiple roles permitted).

To show the presence of an object in a particular state of a class, use the syntax:

objectname : classname ‘[‘ statename-list ‘]’

The list must be a comma-separated list of names of states that can legally occur concurren

The second compartment shows the attributes for the object and their values as a list. Eac
line has the syntax:

attributename : type = value

The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal value e
sions but it is expected that a tool will specify such a syntax using some programming langu
46 UML v1.1, Notation Guide

Static Structure Diagrams

 name.

es held
hange
omes»

 objects,
 object.

e, a
sion.
5.17.3 Presentation options

The name of the object may be omitted. In this case the colon should be kept with the class
This represents an anonymous object of the given class given identity by its relationships.

The class of the object may be suppressed (together with the colon).

The attribute value compartment as a whole may be suppressed.

Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list of valu
over time. This is a good opportunity for the use of animation by a tool (the values would c
dynamically). An alternate notation is to show the same object more than once with a «bec
relationship between them.

5.17.4 Style guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are not
because they describe many possible objects; they are instead roles that may be held by
Objects in class diagrams serve mainly to show examples of data structures.

5.17.5 Variations

For a language such as Self in which operations can be attached to individual objects at run tim
third compartment containing operations would be appropriate as a language-specific exten
UML v 1.1, Notation Guide 47

Static Structure Diagrams

 role
as

 given
xpres-

stance
arts. A

efined
5.17.6 Example

Figure 18. Objects

5.17.7 Mapping

The mapping of an object symbol depends on the diagram:

Within a collaboration, it maps into a ClassifierRole of the corresponding Collaboration. The
has the name specified by the objectname portion of the symbol name string. The ClassifierRole h
a type association to the Class whose name appears in the classname part of the symbol name string.

In an object diagram or within an ordinary class diagram, it maps into an Object of the Class
by the classname part of the name string. The values of the attributes are given by the value e
sions in the attribute list in the symbol.

5.18 COMPOSITE OBJECT

5.18.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is an in
of a composite class, which implies the composition aggregation between the class and its p
composite object is similar to (but simpler and more restricted than) a collaboration, but it is d
completely by composition in a static model.

triangle: Polygon

center = (0,0)
vertices = ((0,0),(4,0),(4,3))
borderColor = black
fillColor = white

triangle: Polygon

triangle

:Polygon

scheduler
48 UML v1.1, Notation Guide

Static Structure Diagrams

 placed
t holds
list of

 a differ-
sting.

 each
ymbols

ithin
5.18.2 Notation

A composite object is shown as an object symbol. The name string of the composite object is
in a compartment near the top of the rectangle (as with any object). The lower compartmen
the parts of the composite object instead of a list of attribute values. (However, even a
attributes values may be regarded as the parts of a composite object, so there is not such
ence.) It is possible for some of the part to themselves be composite objects with further ne

5.18.3 Example

Figure 19. Composite object

5.18.4 Mapping

A composite object symbol maps into an Object of the given Class with composition links to
of the Objects and Links corresponding to the class box symbols and association path s
directly contained within the boundary of the composite object symbol (and not contained w
another deeper boundary).

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves
UML v 1.1, Notation Guide 49

Static Structure Diagrams

 variety
 as dia-

y of a

be con-
ore con-
phically
 of seg-

ociation
se is a

on Role

. These
ment or
ne how
llowing

nfused
ngle
 The
 The
arrow.
5.19 ASSOCIATION

Binary associations are shown as lines connecting two class symbols. The lines may have a
of adornments to show their properties. Ternary and higher-order associations are shown
monds connected to class symbols by lines.

5.20 BINARY ASSOCIATION

5.20.1 Semantics

A binary association is an association among exactly two classes (including the possibilit
reflexive association from a class to itself).

5.20.2 Notation

A binary association is drawn as a solid path connecting two class symbols (both ends may
nected to the same class, but the two ends are distinct). The path may consist of one or m
nected segments. The individual segments have no semantic significance but may be gra
meaningful to a tool in dragging or resizing an association symbol. A connected sequences
ments is called a path.

Un a binary association both ends may attach to the same class. The links of such an ass
may connect two different objects from the same class or one object to itself. The latter ca
reflexive association; it may be forbidden by a constraint if necessary.

The end of an association where it connects to a class is called an association role. Most of the inter-
esting information about an association is attached to its roles. See the section on Associati
for details.

The path may also have graphical adornments attached to the main part of the path itself
adornments indicate properties of the entire association. They may be dragged along a seg
across segments but must remain attached to the path. It is a tool responsibility to determi
close association adornments may approach a role so that confusion does not occur. The fo
kinds of adornments may be attached to a path:

association name

Designates the (optional) name of the association.

Shown as a name string near the path (but not near enough to an end to be co
with a rolename). The name string may have an optional small black solid tria
in it; the point of the triangle indicates the direction in which to read the name.
name-direction arrow has no semantics significance; it is purely descriptive.
classes in the association are ordered as indicated by the name-direction
50 UML v1.1, Notation Guide

Static Structure Diagrams

l;

hin
perty

 opera-
 asso-

 under-
e path,

ity, but
 away
 class

o indi-
can be

ts, and

ssoci-
ne con-
straint
t one
ed use
(Note that there is no need for a name direction property on the association mode
the ordering of the classes within the association is the name direction. This con-
vention works even with n-ary associations.) A stereotype keyword wit
guillemets may be placed above or in front of the association name. A pro
string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes,
tions, and other associations. This is present if and only if the association is an
ciation class.

Shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same
lying model element which has a single name. The name may be placed on th
in the class symbol, or on both (but they must be the same name).

Logically the association class and the association are the same semantic ent
they are graphically distinct. The association class symbol can be dragged
from the line but the dotted line must remain attached to both the path and the
symbol.

5.20.3 Presentation options

When two paths cross, the crossing may optionally be shown with a small semicircular jog t
cate that the paths do not intersect (as in electrical circuit diagrams). Alternately crossing
unmarked but connections might be shown by small dots.

5.20.4 Style guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segmen
curved segments. The choice of a particular set of line styles is a user choice.

5.20.5 Options

Or-association. An or-constraint indicates a situation in which only one of several potential a
ations may be instantiated at one time for any single object. This is shown as a dashed li
necting two or more associations, all of which must have a class in common, with the con
string “{or}” labeling the dashed line. Any instance of the class may only participate in at mos
of the associations at one time. Each rolename must be different. (This is simply a predefin
of the constraint notation.)
UML v 1.1, Notation Guide 51

Static Structure Diagrams

 corre-
ng to the
 second
ciation
scribed

t of the
resting
5.20.6 Example

Figure 20. Association notation

5.20.7 Mapping

An association path connecting two class symbols maps to an Association between the
sponding Classes. If there is an arrow on the association name, then the Class correspondi
tail of the arrow is the first class and the Class corresponding to the head of the arrow is the
Class in the ordering of roles of the Association; otherwise the ordering of roles in the asso
is undetermined. The adornments on the path map into properties of the Association as de
above. The Association is owned by the package containing the diagram.

5.21 ASSOCIATION END

5.21.1 Semantics

An association end is simply an end of an association where it connects to a class. It is par
association, not part of the class. Each association has two or more ends. Most of the inte

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{or}

salary
52 UML v1.1, Notation Guide

Static Structure Diagrams

element;

 symbol.
s are part
ched to
dorn-

ssed
licity
tation.

an be
orm a
d. The

ns that
citly

ed not

dupli-
 This

cified
on. An
or the

 infor-

sorting

 sup-
o, one,
 nav-
sup-
details about an association are attached to its ends. An association end is not a separable
it is just a mechanical part of an association.

5.21.2 Notation

The path may have graphical adornments at each end where the path connects to the class
These adornments indicate properties of the association related to the class. The adornment
of the association symbol, not part of the class symbol. The end adornments are either atta
the end of the line or near the end of the line and must drag with it. The following kinds of a
ments may be attached to an association end:

multiplicity – specified by a text syntax, see detail section. Multiplicity may be suppre
on a particular association or for an entire diagram. In an incomplete model the multip
may be unspecified in the model itself, in which case it must be suppressed in the no

ordering – if the multiplicity is greater than one, then the set of related elements c
ordered or unordered. If no indication is given, then it is unordered (the elements f
set). Various kinds of ordering can be specified as a constraint on the association en
declaration does not specify how the ordering is established or maintained; operatio
insert new elements must make provision for specifying their position either impli
(such as at the end) or explicitly. Possible values include:

unordered — the elements form an unordered set. This is the default and ne
be shown explicitly.

ordered — the elements of the set are ordered into a list. It is still a set and
cates are prohibited. This generic specification includes all kinds of ordering.
may be specified by the keyword syntax: “{ordered}”.

An ordered relationship may be implemented in various ways but this is normally spe
as a language-specified code generation property to select a particular implementati
implementation extension might substitute the data structure to hold the elements f
generic specification “ordered”.

At implementation level, sorting may also be specified. It does not add new semantic
mation but it expresses a design decision:

sorted — the elements are sorted based on their internal values. The actual
rule is best specified as a separate constraint.

qualifier – see detail section. Qualifier is optional but not suppressible.

navigability

An arrow may be attached to the end of the path to indicate that navigation is
ported toward the class attached to the arrow. Arrows may be attached to zer
or two ends of the path. To be totally explicit arrows may be shown whenever
igation is supported in a given direction. In practice it is often convenient to
UML v 1.1, Notation Guide 53

Static Structure Diagrams

ntation

. The
t at all.
tion is

 as

 class
ot sup-

ect. In
le the
 than
s).

ll col-
re is

iginal
l class
 or a

n full

ator is
d, or
 cre-
 be
fied

ra-
press some of the arrows and just show exceptional situations. See the prese
options for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation
diamond may not be attached to both ends of a line, but it need not be presen
The diamond is attached to the class that is the aggregate. The aggrega
optional but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known
composition.

rolename

A name string near the end of the path. It indicates the role played by the
attached to end of the path near the rolename. The rolename is optional but n
pressible.

interface specifier

The name of a Classifier with the syntax

‘:’ classifiername

It indicates the behavior expected of an associated object by the related obj
other words, the interface specifier specifies the behavior required to enab
association. In this case, the actual class usually provides more functionality
required for the particular association (since it may have other responsibilitie

The use of a rolename and interface specifier are equivalent to creating a sma
laboration that includes just an association and two roles, whose structu
defined by the rolename and role classifier on the original association. The or
association and classes are therefore a use of the collaboration. The origina
must be compatible with the interface specifier (which can be an interface
type).

If a interface specifier is omitted, then the association may be used to obtai
access to the associated class.

changeability

If the links are changeable (can be added, deleted, and moved) then no indic
needed. The property {frozen} indicates that no links may be added, delete
moved from an object (toward the end with the adornment) after the object is
ated and initialized. The property {addOnly} indicates that additional links may
added (presumably the multiplicity is variable) but that links may not be modi
or deleted..

visibility

Specified by a visibility indicator (‘+’, ‘#’, ‘-’ or explicit keyword such as
{public}) in front of the rolename. Specifies the visibility of the association t
54 UML v1.1, Notation Guide

Static Structure Diagrams

ils of

em. To
xt string

 merging
ggrega-
ics to it.

ry from

 is not

gation.

direc-
two-
 nor-
hich

eading

onfused
pecify
t this

plicity
ple, “*
versing in the direction toward the given rolename. See Section 5.7 for deta
visibility specification.

Other properties can be specified for association roles but there is no graphical syntax for th
specify such properties use the constraint syntax near the end of the association path (a te
in braces). Examples of such other properties include mutability.

5.21.3 Presentation options

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by
the aggregation end into a single segment. This requires that all of the adornments on the a
tion ends be consistent. This is purely a presentation option; there are no additional semant

Various options are possible for showing the navigation arrows on a diagram. These can va
time to time by user request or from diagram to diagram:

Presentation option 1: Show all arrows. The absence of an arrow indicates navigation
supported.

Presentation option 2: Suppress all arrows. No inference can be drawn about navi
This is similar to any situation in which information is suppressed from a view.

Presentation options 3: Suppress arrows for associations with navigability in both
tions; show arrows only for associations with one-way navigability. In this case the
way navigability cannot be distinguished from no-way navigation, but the latter case is
mally rare or nonexistent in practice. This is yet another example of a situation in w
some information is suppressed from a view.

5.21.4 Style guidelines

If there are multiple adornments on a single role, they are presented in the following order, r
from the end of the path attached to the class toward the bulk of the path:

qualifier

aggregation symbol

navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are not c
with a different association. They may be placed on either side of the line. It is tempting to s
that they will always be placed on a given side of the line (clockwise or counterclockwise) bu
is sometimes overridden by the need for clarity in a crowded layout. A rolename and a multi
may be placed on opposite sides of the same role, or they may be placed together (for exam
employee”).
UML v 1.1, Notation Guide 55

Static Structure Diagrams

 role of
 (it may

licity
s, and
gative

nce of
ormat:

lu-
 char-
aram-
5.21.5 Example

Figure 21. Various adornments on association roles

5.21.6 Mapping

The adornments on the end of an association path map into properties of the corresponding
the Association. In general, implications cannot be drawn from the absence of an adornment
simply be suppressed) but see the preceding descriptions for details.

5.22 MULTIPLICITY

5.22.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume. Multip
specifications may be given for roles within associations, parts within composites, repetition
other purposes. Essentially a multiplicity specification is a subset of the open set of nonne
integers.

5.22.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated seque
integer intervals, where an interval represents a (possibly infinite) range of integers, in the f

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed (inc
sive) range of integers from the lower bound to the upper bound. In addition, the star
acter (*) may be used for the upper bound, denoting an unlimited upper bound. In a p

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+points
56 UML v1.1, Notation Guide

Static Structure Diagrams

st eval-
aluate

 value.

ited

 must
sions,

ble to

refer-

tion
bject;
eterized context (such as a template) the bounds could be expressions but they mu
uate to literal integer values for any actual use. Unbound expressions that do not ev
to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer

If the multiplicity specification comprises a single star (*), then it denotes the unlim
nonnegative integer range, that is, it is equivalent to *..* = 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they
resolve to fixed integer ranges within the model (i.e., no dynamic evaluation of expres
essentially the same rule on literal values as most programming language).

5.22.3 Style guidelines

Intervals should preferably be monotonically increasing. For example, “1..3,7,10” is prefera
“7,10,1..3”.

Two contiguous intervals should be combined into a single interval. For example, “0..1” is p
able to “0,1”.

5.22.4 Example

0..1

1

0..*

*

1..*

1..6

1..3,7..10,15,19..*

5.22.5 Mapping

A multiplicity string maps into a Multiplicity value. Duplications or other nonstandard presenta
of the string itself have no effect on the mapping. Note that Multiplicity is a value and not an o
it cannot stand on its own but is the value of some element property.
UML v 1.1, Notation Guide 57

Static Structure Diagrams

 asso-

the final
t of the
ts. The
together
 other

 target
nclude
y select
ain of
rget

ibutes
at initial

iation.

ify the

 them

s is not
5.23 QUALIFIER

5.23.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of objects
ciated with an object across an association. The qualifiers are attributes of the association.

5.23.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path between
path segment and the symbol of the class that it connects to. The qualifier rectangle is par
association path, not part of the class. The qualifier rectangle drags with the path segmen
qualifier is attached to the source end of the association; that is, an object of the source class
with a value of the qualifier uniquely select a partition in the set of target class objects on the
end of the association (i.e., every target falls into exactly one partition).

The multiplicity attached to the target role denotes the possible cardinalities of the set of
objects selected by the pairing of a source object and a qualifier value. Common values i
“0..1” (a unique value may be selected, but every possible qualifier value does not necessaril
a value), “1” (every possible qualifier value selects a unique target object, therefore the dom
qualifier values must be finite), and “*” (the qualifier value is an index that partitions the ta
objects into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attr
shown one to a line. Qualifier attributes have the same notation as class attributes, except th
value expressions are not meaningful.

It is permissible (although somewhat rare) to have a qualifier on each end of a single assoc

5.23.3 Presentation options

A qualifier may not be suppressed (it provides essential detail whose omission would mod
inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguish
clearly.

5.23.4 Style guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although thi
always practical.
58 UML v1.1, Notation Guide

Static Structure Diagrams

e corre-
to an

sociation
 model

n associ-
path are
on either
ed line..

oes not
5.23.5 Example

Figure 22. Qualified associations

5.23.6 Mapping

The presence of a qualifier box on an end of an association path maps into a Qualifier on th
sponding Association Role. Each attribute entry string inside the qualifier box maps in
Attribute of the Qualifier.

5.24 ASSOCIATION CLASS

5.24.1 Semantics

An association class is an association that also has class properties (or a class that has as
properties). Even though it is drawn as an association and a class, it is really just a single
element.

5.24.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to a
ation path. The name in the class symbol and the name string attached to the association
redundant and should be the same. The association path may have the usual adornments
end. The class symbol may have the usual contents. There are no adornments on the dash

5.24.3 Presentation options

The class symbol may be suppressed (it provides subordinate detail whose omission d
change the overall relationship. The association path may not be suppressed.

Square

Chessboard

rank:Rank
file:File

Person

Bank

account #

∗
0..1 1

1

UML v 1.1, Notation Guide 59

Static Structure Diagrams

rs to be

herefore
associa-
 be dis-
ts “asso-
om the
e actual

lass box
is taken
oth are
ly. The
perties
elf; they
5.24.4 Style guidelines

The attachment point should not be near enough to either end of the path that it appea
attached to the end of the path or to any of the role adornments.

Note that the association path and the association class are a single model element and t
have a single name. The name can be shown on the path or the class symbol or both. If an
tion class has only attributes but no operations or other associations, then the name may
played on the association path and omitted from the association class symbol to emphasize i
ciation nature.” If it has operations and other associations, then the name may be omitted fr
path and placed in the class rectangle to emphasize its “class nature.” In neither case are th
semantics different.

5.24.5 Example

Figure 23. Association class

5.24.6 Mapping

An association path connecting two class boxes connected by a dashed line to another c
maps into a single Association Class element. The name of the Association Class element
from the association path or the attached class box or both (they must be consistent if b
present). The Association properties map from the association path as specified previous
Class properties map from the class box as specified previously. Any constraints or pro
places on either the association path or attached class box apply to the Association Class its
must not conflict.

Person

Manages

Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job
salary
60 UML v1.1, Notation Guide

Static Structure Diagrams

ore than
 binary

 The
en the

 a path)
 shown
. Multi-

es an n-

ssumed
t teams.
5.25 N-ARY ASSOCIATION

5.25.1 Semantics

An n-ary association is an association among 3 or more classes (a single class may appear m
once). Each instance of the association is an n-tuple of values from the respective classes. A
association is a special case with its own notation.

Multiplicity for n-ary associations may be specified but is less obvious than binary multiplicity.
multiplicity on a role represents the potential number of instance tuples in the association wh
other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

5.25.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminator on
with a path from the diamond to each participant class. The name of the association (if any) is
near the diamond. Role adornments may appear on each path as with a binary association
plicity may be indicated, however, qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This indicat
ary association that has attributes, operations, and/or associations.

5.25.3 Style guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

5.25.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It is a
that the goalkeeper might be traded during the season and can therefore appear with differen
UML v 1.1, Notation Guide 61

Static Structure Diagrams

ciation
etermi-

e corre-

 with
 seman-

iation in

Figure 24. Ternary association that is also an association class

5.25.5 Mapping

A diamond attached to some number of class boxes by solid lines maps into an N-ary Asso
whose roles are corresponding Classes. The ordering of the Classes in the Association is ind
nate from the diagram. If a class box is attached to the diamond by a dashed line, then th
sponding Class supplies the class properties for an N-ary Association Class.

5.26 COMPOSITION

5.26.1 Semantics

Composition is a form of aggregation with strong ownership and coincident lifetime of part
the whole. The multiplicity of the aggregate end may not exceed one (it is unshared). See the
tics document for further details.

The parts of a composition may include classes and associations. The meaning of an assoc
a composition is that any tuple of objects connected by a single link must all belong to thesame
container object.

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

∗

∗

∗

season

team

ties
62 UML v1.1, Notation Guide

Static Structure Diagrams

nately
many

mposi-
in the
in its
 part;
ulti-
e com-

iation
y.

es of its

 com-
drawn
osition;

n may
posite

, etc.

may be
erties).
e used

e class.
5.26.2 Notation

Composition may be shown by a solid filled diamond as an association role adornment. Alter
UML provides a graphically-nested form that is more convenient for showing composition in
cases.

Instead of using binary association paths using the composition aggregation adornment, co
tion may be shown by graphical nesting of the symbols of the elements for the parts with
symbol of the element for the whole. A nested class-like element may have a multiplicity with
composite element. The multiplicity is shown in the upper right corner of the symbol for the
if the multiplicity mark is omitted then the default multiplicity is many. This represents its m
plicity as a part within the composite class. A nested element may have a rolename within th
position; the name is shown in front of its type in the syntax:

rolename ‘:’ classname

This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of an assoc
path attached to the element for the whole. The multiplicity may be shown in the normal wa

Note that attributes are, in effect, composition relationships between a class and the class
attributes.

An association drawn entirely within a border of the composite is considered to be part of the
position; any objects on a single link of it must be from the same composite. An association
such that its path breaks the border of the composite is not considered to be part of the comp
any objects on a single link of it may be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A compositio
be thought of as a collaboration in which all of the participants are parts of a single com
object.

5.26.3 Design guidelines

This notation is applicable to “class-like” model elements: classes, types, nodes, processes

Note that a class symbol is a composition of its attributes and operations. The class symbol
thought of as an example of the composition nesting notation (with some special layout prop
However, attribute notation subordinates the attributes strongly within the class, so it should b
when the structure and identity of the attribute objects themselves is unimportant outside th
UML v 1.1, Notation Guide 63

Static Structure Diagrams
5.26.4 Example

Figure 25. Different ways to show composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2 1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11
64 UML v1.1, Notation Guide

Static Structure Diagrams

butes
hes the

onding

ne com-
 Classes
ociation
alue
box

 is an

 it may

he path;
ke their
e
own on

ous

t for
5.26.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although attri
may be semantically equivalent to composition on a deep level, the mapped model distinguis
two forms.

A solid diamond on an association path maps into the composition property on the corresp
Association Role.

A class box with contained class boxes maps into a set of composition associations, that is, o
position association between the Class corresponding to the outer class box and each of the
corresponding to the enclosed class boxes. The multiplicity of the composite end of each ass
is 1. The multiplicity of each constituent end is 1 if not explicitly specified, otherwise it is the v
specified in the corner of the class box or specified on an association path from the outer class
boundary to an inner class box.

5.27 LINKS

5.27.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object references. It
instance of an association.

5.27.2 Notation

A binary link is shown as a path between two objects. In the case of a reflexive association,
involve a loop with a single object. See Association for details of paths.

A rolename may be shown at each end of the link. An association name may be shown near t
if present, it is underlined to indicate an instance. Links do not have instance names; they ta
identity from the objects that they relate. Multiplicity is not shown for links because they ar
instances. Other association adornments (aggregation, composition, navigation) may be sh
the link roles.

A qualifier may be shown on a link. The value of the qualifier may be shown in its box.

Implementation stereotypes. A stereotype may be attached to the link role to indicate vari
kinds of implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify excep
emphasis)

«parameter» procedure parameter
UML v 1.1, Notation Guide 65

Static Structure Diagrams

 to

other
s as the

sifier-
 it is the
ate the

 to the
n Asso-
«local» local variable of a procedure

«global» global variable

«self» self link (the ability of an object to send a message
itself)

N-ary link. An n-ary link is shown as a diamond with a path to each participating object. The
adornments on the association and the adornments on the roles have the same possibilitie
binary link.

5.27.3 Example

Figure 26. Links

5.27.4 Mapping

The mapping depends on the kind of diagram:

Within a collaboration diagram, each link path maps to an AssociationRole between the Clas
Roles corresponding to the connected class boxes. If a name is placed on the link path, then
name of the Association that is the type of the AssociationRole. Stereotypes on the path indic
form of the relationship within the collaboration.

Within an object diagram, each link path maps to a Link between the Objects corresponding
connected class boxes. If a name is placed on the link path, then it is an instance of the give
ciation (and the role names must match or the diagram is ill formed).

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer
66 UML v1.1, Notation Guide

Static Structure Diagrams

specific
 used

lass) to
the path

 sub-
icates

may be
s for the

segment

to sub-
en prop-

m may
ditional
are not
emantic
5.28 GENERALIZATION

5.28.1 Semantics

Generalization is the taxonomic relationship between a more general element and a more
element that is fully consistent with the first element and that adds additional information. It is
for classes, packages, use cases, and other elements.

5.28.2 Notation

Generalization is shown as a solid-line path from the more specific element (such as a subc
the more general element (such as a superclass), with a large hollow triangle at the end of
where it meets the more general element.

A generalization path may have a text label in the following format:

discriminator

where discriminator is the name of a partition of the subtypes of the superclass. The
class is declared to be in the given partition. The absence of a discriminator label ind
the “empty string” discriminator which is a valid value (the “default” discriminator).

Generalization may be applied to associations as well as classes, although the notation
messy because of the multiple lines. An association can be shown as an association clas
purpose of attaching generalization arrows.

5.28.3 Presentation options

A group of generalization paths for a given superclass may be shown as a tree with a shared
(including triangle) to the superclass, branching into multiple paths to each subclass.

If a text label is placed on a generalization triangle shared by several generalization paths
classes, the label applies to all of the paths. In other words, all of the subclasses share the giv
erties.

5.28.4 Details

The existence of additional subclasses in the model that are not shown on a particular diagra
be shown using an ellipsis (. . .) in place of a subclass. (Note: this does not indicate that ad
classes may be added in the future. It indicates that additional classes exist right now but
being seen. This is a notational convention that information has been suppressed, not a s
statement)
UML v 1.1, Notation Guide 67

Static Structure Diagrams

sses. A
al paths
volved.

ses.

lasses.

tional

ncom-
he is
s the
t are

uper-
he sub-
Predefined constraints may be used to indicate semantic constraints among the subcla
comma-separated list of keywords is placed in braces either near the shared triangle (if sever
share a single triangle) or else near a dotted line that crosses all of the generalization lines in
The following keywords (among others) may be used:

The following constraints are predefined:

overlapping A descendent may be descended from more than one of the subclas

disjoint A descendent may not be descended from more than one of the subc

complete All subclasses have been specified (whether or not shown). No addi
subclasses are expected.

incomplete Some subclasses have been specified but the list is known to be i
plete. There are additional subclasses that are not yet in the model. T
a statement about the model itself. Note that this is not the same a
ellipsis, which states that additional subclasses exist in the model bu
not shown on the current diagram.

The discriminator must be unique among the attributes and association roles of the given s
class. Multiple occurrences of the same discriminator name are permitted and indicate that t
classes belong to the same partition.
68 UML v1.1, Notation Guide

Static Structure Diagrams

antics
The use of multiple classification dynamic classification affects the dynamic execution sem
of the language but is not unusually apparent from a static model.

5.28.5 Example

Figure 27. Styles of displaying generalization

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
UML v 1.1, Notation Guide 69

Static Structure Diagrams

e corre-
 of Gen-
lass cor-
m a set

operty
property
Figure 28. Generalization with discriminators and constraints, separate target style

Figure 29. Generalization with shared target style

5.28.6 Mapping

Each generalization path between two class boxes maps into a Generalization between th
sponding Classes. A generalization tree with one arrowhead and many tails maps into a set
eralizations, one between each Class corresponding to a class box on a tail and the single C
responding to the class box on the head. That is, a tree is semantically indistinguishable fro
of distinct arrows; it is purely a notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A pr
string attached to the head line segment on a generalization tree represents a (duplicated)
on each of the individual Generalizations.

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue

venuepower
power

SailboatTruck

{overlapping} {overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

species
70 UML v1.1, Notation Guide

Static Structure Diagrams

emantic
iagram.

 relates
ndicates
ment in

nt at the
 with an

concept

ith a
f the
ds of
ereo-

ent for
r to
ion of
ct of

rame-

direction
The presence of an ellipsis (“...”) as a subclass node of a given class indicates that the s
model contains at least one subclass of the given class that is not visible on the current d
Normally this indicator will be automatically maintained by an editing tool.

5.29 DEPENDENCY

5.29.1 Semantics

A dependency indicates a semantic relationship between two (or more) model elements. It
the model elements themselves and does not require a set of instances for its meaning. It i
a situation in which a change to the target element may require a change to the source ele
the dependency.

5.29.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model eleme
tail of the arrow depends on the model element at the arrowhead. The arrow may be labeled
optional stereotype and an optional name.

The following kinds of Dependency are predefined and may be indicated with keywords:

trace – Trace: a historical connection between two elements that represent the same
at different levels of meaning

refine – Refinement: a historical or derivation connection between two elements w
mapping (not necessarily complete) between them. A description o
mapping may be attached to the dependency in a note. Various kin
refinement have been proposed and can be indicated by further st
typing.

uses – Usage: a situation in which one element requires the presence of another elem
its correct implementation or functioning. May be stereotyped furthe
indicate the exact nature of the dependency, such as calling an operat
another class, granting permission for access, instantiating an obje
another class, etc.

bind – Binding: a binding of template parameters to actual values to create a nonpa
terized element. See Section 5.12 for more details.

5.29.3 Presentation options

If one of the elements is a note or constraint then the arrow may be suppressed because the
is clear (the note or constraint is the source of the arrow).
UML v 1.1, Notation Guide 71

Static Structure Diagrams

ymbols
 are the
5.29.4 Example

Figure 30. Various usage dependencies among classes

Figure 31. Dependencies among packages

5.29.5 Mapping

A dashed arrow maps into a Dependency between the Elements corresponding to the s
attached to the ends of the arrow. The stereotype and the name (if any) attached to the arrow
stereotype and name of the Dependency

«friend»
ClassA ClassB

ClassC

«instantiates»

«calls»

ClassD

operationZ()
«friend»

Controller

Diagram
Elements

Domain
Elements

Graphics
Core
72 UML v1.1, Notation Guide

Static Structure Diagrams

rity or

t, such

reotype
simply
en it is
5.30 DERIVED ELEMENT

5.30.1 Semantics

A derived element is one that can be computed from another one, but that is shown for cla
that is included for design purposes even though it adds no semantic information.

5.30.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived elemen
as an attribute or a rolename.

5.30.3 Style guidelines

The details of computing a derived element can be specified by a dependency with the ste
«derived». Usually it is convenient in the notation to suppress the dependency arrow and
place a constraint string near the derived element, although the arrow can be included wh
helpful.
UML v 1.1, Notation Guide 73

Static Structure Diagrams

into the
5.30.4 Example

Figure 32. Derived attribute and derived association

5.30.5 Mapping

The presence of a derived adornment (a leading “/” on the symbol name) on a symbol maps
setting of the “derived” property of the corresponding Element.

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1
employer

employer
department
74 UML v1.1, Notation Guide

Use Case Diagrams

nts func-

, commu-
lizations
6. USE CASE DIAGRAMS

A use case diagram shows the relationship among actors and use cases within a system.

6.1 USE CASE DIAGRAM

6.1.1 Semantics

Use case diagrams show elements from the use case model. The use case model represe
tionality of a system or a class as mainfested to external interactors with the system.

6.1.2 Notation

A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary
nication (participation) associations between the actors and the use cases, and genera
among the use cases.
UML v 1.1, Notation Guide 75

Use Case Diagrams

eCase-
6.1.3 Example

Figure 33. Use case diagram

6.1.4 Mapping

A set of use case ellipses within a box with connections to actor symbols maps to a single Us
Model package containing a set of UseCases and Actors with relationships among them.

Customer

Supervisor

Salespersonplace
order

establish
credit

check
status

Telephone Catalog

fill orders

Shipping Clerk
76 UML v1.1, Notation Guide

Use Case Diagrams

ted by
rs (called

 cases
n points

l items

rt of a
outside
rs.
6.2 USE CASE

6.2.1 Semantics

A use case is a coherent unit of functionality provided by a system or class as manifes
sequences of messages exchanged among the system and one or more outside interacto
actors) together with actions performed by the system.

6.2.2 Notation

A use case is shown as an ellipse containing the name of the use case.

An extension point is a location within a use case at which action sequences from other use
may be inserted. Each extension point must have a unique name within a use case. Extensio
may be listed in a compartment of the use case with the heading extension points.

6.2.3 Presentation options

The name of the use case may be placed below the ellipse.

6.2.4 Style guidelines

Use case names should follow capitalization and punctuation guidelines used for behaviora
in the same model.

6.2.5 Mapping

A use case symbol maps to a UseCase with the given name (if any).

An extension point maps into an ExtensionPoint within the UseCase.

6.3 ACTOR

6.3.1 Semantics

An actor is a role of object or objects outside of a system that interacts directly with it as pa
coherent work unit (a use case). An Actor element characterizes the role played by an
object; one physical object may play several roles and therefore be modeled by several acto
UML v 1.1, Notation Guide 77

Use Case Diagrams

reotype

ses in

s.

nship

nstance
n) the
e case

e of the

between

se case
ends».

e doing
6.3.2 Notation

An actor may be shown as a class rectangle with the stereotype “actor”. The standard ste
icon for an actor is the “stick man” figure with the name of the actor below the figure.

6.3.3 Style guidelines

Actor names should follow capitalization and punctuation guidelines used for types and clas
the same model.

6.3.4 Mapping

An actor symbol maps to an Actor with the given name.

6.4 USE CASE RELATIONSHIPS

6.4.1 Semantics

There are several standard relationships among use cases or between actors and use case

Communicates – The participation of an actor in a use case. This is the only relatio
between actors and use cases.

Extends – An extends relationships from use case A to use case B indicates that an i
of use case B may include (subject to specific conditions specified in the extensio
behavior specified by A. Behavior specified by several extenders of a single target us
may occur within a single use case instance.

Uses – A uses relationship from use case A to use case B indicates that an instanc
use case A will also include the behavior as specified by B.

6.4.2 Notation

The communication relationship between an actor and a use case is shown as a solid line
the actor and the use case.

An “extends” relationship between use cases is shown by a generalization arrow from the u
providing the extension to the base use case. The arrow is labeled with the stereotype «ext

A “uses” relationship between use cases is shown by a generalization arrow from the use cas
the use to the use case being used. The arrow is labeled with the stereotype «uses».
78 UML v1.1, Notation Guide

Use Case Diagrams

wn by an
menta-
n invis-

to see

etween
The relationship between a use case and its external interaction sequences are usually sho
invisible hyperlink to sequence diagrams. The relationship between a use case and its imple
tion may be shown as a refinement relationship to a collaboration but may also be shown as a
ible hyperlink. The expectation is that a tool will support the ability to “zoom into” a use case
its scenarios and/or implementation as an interaction.

6.4.3 Example

Figure 34. Use case relationships

6.4.4 Mapping

A path between use case and/or actor symbols maps into the corresponding relationship b
the corresponding Elements, as described above.

Place Order

additional requests

Order
Product

Supply
Customer

Data

Arrange
Payment

«uses»«uses»
«uses»

Request
Catalog

«extends»
extension points
UML v 1.1, Notation Guide 79

Sequence Diagrams

grams
ticular

s the
hange

s.

nd in an
without

fferent
me spec-
bjects
n.

g objects

rizontal
nsions

cations
 of the

otation
tions
7. SEQUENCE DIAGRAMS

7.1 KINDS OF INTERACTION DIAGRAMS

A pattern of interaction among objects is shown on an interaction diagram. Interaction dia
come in two forms based on the same underlying information but each emphasizing a par
aspect of it: sequence diagrams and collaboration diagrams.

A sequence diagram shows an interaction arranged in time sequence. In particular, it show
objects participating in the interaction by their “lifelines” and the messages that they exc
arranged in time sequence. It does not show the associations among the objects.

Sequence diagrams come in several slightly different formats intended for different purpose

A sequence diagram can exist in a generic form (describes all the possible sequences) a
instance form (describes one actual sequence consistent with the generic form). In cases
loops or branches, the two forms are isomorphic.

Sequence diagrams and collaboration diagrams express similar information but show it in di
ways. Sequence diagrams show the explicit sequence of messages and are better for real-ti
ifications and for complex scenarios. Collaboration diagrams show the relationships among o
and are better for understanding all of the effects on a given object and for procedural desig

7.2 SEQUENCE DIAGRAM

7.2.1 Semantics

A sequence diagram represents an Interaction, which is a set of messages exchanged amon
within a collaboration to effect a desired operation or result.

7.2.2 Notation

A sequence diagram has two dimensions: the vertical dimension represents time, the ho
dimension represents different objects. Normally time proceeds down the page. (The dime
may be reversed if desired.) Usually only time sequences are important but in real-time appli
the time axis could be an actual metric. There is no significance to the horizontal ordering
objects. Objects can be grouped into “swimlanes” on a diagram.

See subsequent sections for details of the contents of a sequence diagram.

(Note that much of this notation is drawn directly from the Object Message Sequence Chart n
of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself derived with modifica
from the Message Sequence Chart notation.)
80 UML v1.1, Notation Guide

Sequence Diagrams

o pro-
oes not

objects

e) can
7.2.3 Presentation options

Note that the horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged t
ceed in one direction across the page, but this is not always possible and the ordering d
convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and different
are shown as horizontal lines.

Various labels (such as timing marks, descriptions of actions during an activation, and so on
be shown either in the margin or near the transitions or activations that they label.

7.2.4 Example

Figure 35. Simple sequence diagram with concurrent objects

caller exchange

lift receiver

dial tone

dial digit

a

b

c

{b - a < 1 sec.}

{c - b < 10 sec.}

. . .

d

d'

route

{d' - d< 5 sec.}

receiver

phone ringsringing tone

answer phone

stop ringingstop tone

The call is
routed through
the network.

At this point
the parties
can talk.
UML v 1.1, Notation Guide 81

Sequence Diagrams

n

t, some
Figure 36. Sequence diagram with focus of control, conditional, recursion, creation, destructio

7.2.5 Mapping

(This section summarizes the mapping for the sequence diagram and the elements within i
of which are described in subsequent sections.)

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2

ob3:C3 ob4:C4

op()
82 UML v1.1, Notation Guide

Sequence Diagrams

ct box
e and
The
d in the
s into a
nnects;
iagram
een the
rrow
iagram

 to the
arget
w; oth-

ges
he map-

 on the
a
s, acti-

ration)
activa-
ow
essage
 at
me

ecessor
become
on with

y play
nce and

. There
A sequence diagram maps into an Interaction and an underlying Collaboration. Each obje
with its lifeline maps into a ClassifierRole; the name field maps into the ClassifierRole nam
the type field maps into the type association from the role to the Classifier with the given name.
associations among roles are not shown on the sequence diagram; they must be obtaine
model from a complementary collaboration diagram or other means. A message arrow map
Message between the ClassifierRoles corresponding to the two lifelines that the arrow co
unless the correct AssociationRole can be determined from a complementary collaboration d
or other means, the Message must be attached to a dummy AssociationRole implied betw
two ClassifierRoles for lack of complete information. A timing label placed on the level of an a
endpoint maps into the name of the corresponding Message. A constraint placed on the d
maps into a Constraint on the entire Interaction.

An object symbol placed within the frame of the diagram maps into a CreateAction attached
Message corresponding to the incoming arrow. If an object termination symbol (“X”) is the t
of an arrow, it maps into a DestroyAction attached to the Message corresponding to the arro
erwise it maps into a TerminateAction

On a diagram with concurrent objects, a predecessor association is established between Messa
corresponding to successive arrows in the vertical sequence. In case of concurrent arrows, t
ping to a predecessor sequence may be ambiguous and may require additional information.

On a procedural sequence diagram (one with focus of control and calls) subsequent arrows
same lifeline map into Messages obeying the predecessor association. An arrow to the head of
focus of control region establishes a nested activation; it maps into a Message (synchronou
vation) with associated CallAction (holding the arguments and referencing the target Ope
between the ClassifierRoles corresponding to the lifelines. All arrows departing the nested
tion map into Messages with an activation Association to the Message corresponding to the arr
at the head of the activation. A return arrow departing the end of the activation maps into a M
(synchronous, reply) with an activation Association to the Message corresponding to the arrow
the head of the activation and a predecessor association to the previous message within the sa
activation. A return must be the final message within a predecessor chain; it is not the pred
of any message. Any guard conditions or iteration conditions attached to a message arrow
recurrence values of the Message. The operation name is used to select the target Operati
the given name. The operation arguments become argument Expressions on the Action.

7.3 OBJECT LIFELINE

7.3.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object that ma
the role and describes its relationships to other Roles. Within a sequence diagram the existe
duration of the object in a role is shown, but the relationships among the roles is not shown
are ClassifierRoles and AssociationRoles.
UML v 1.1, Notation Guide 83

Sequence Diagrams

ts the
riod of
 it goes
ine; if
owhead
arked

ruction)
saction
 trans-

arate
ther at

ction
tion in

hose
t next
ssage
l flow
itiates
7.3.2 Notation

An object role is shown as a vertical dashed line called the “lifeline”. The lifeline represen
existence of the object at a particular time. If the object is created or destroyed during the pe
time shown on the diagram, then its lifeline starts or stops at the appropriate point; otherwise
from the top to the bottom of the diagram. An object symbol is drawn at the head of the lifel
the object is created during the diagram, then the message that creates it is drawn with its arr
on the object symbol. If the object is destroyed during the diagram, then its destruction is m
by a large “X”, either at the message that causes the destruction or (in the case of self-dest
at the final return message from the destroyed object. An object that exists when the tran
starts is shown at the top of the diagram (above the first arrow). An object that exists when the
action finishes has its lifeline continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. Each sep
track corresponds to a conditional branch in the message flow. The lifelines may merge toge
some subsequent point.

7.3.3 Example

See Figure 36.

7.3.4 Mapping

See Section 7.2.5.

7.4 ACTIVATION

7.4.1 Semantics

An activation (focus of control) shows the period during which an object is performing an a
either directly or through a subordinate procedure. It represents both the duration of the ac
time and the control relationship between the activation and its callers (stack frame).

7.4.2 Notation

An activation is shown as a tall thin rectangle whose top is aligned with its initiation time and w
bottom is aligned with its completion time. The action being performed may be labeled in tex
to the activation symbol or in the left margin, depending on style; alternately the incoming me
may indicate the action, in which case it may be omitted on the activation itself. In procedura
of control, the top of the activation symbol is at the tip of an incoming message (the one that in
the action) and the base of the symbol is at the tail of a return message.
84 UML v1.1, Notation Guide

Sequence Diagrams

ws the
levant.

ure) is

 active
rds, all
rsive call
 right
n arbi-

on that

ne of
 on the
al) and
equence
ce dia-
re nec-
or iden-
.

In the case of concurrent objects each with their own threads of control, an activation sho
duration when each object is performing an operation; operations by other objects are not re
If the distinction between direct computation and indirect computation (by a nested proced
unimportant, the entire lifeline may be shown as an activation.

In the case of procedural code, an activation shows the duration during which a procedure is
in the object or a subordinate procedure is active, possibly in some other object. In other wo
of the active nested procedure activations may be seen at a given time. In the case of a recu
to an object with an existing activation, the second activation symbol is drawn slightly to the
of the first one, so that they appear to “stack up” visually. (Recursive calls may be nested to a
trary depth.)

7.4.3 Example

See Figure 36.

7.4.4 Mapping

See Section 7.2.5.

7.5 MESSAGE

7.5.1 Semantics

A message is a communication between objects that conveys information with the expectati
action will ensue. The receipt of a message is one kind of event.

7.5.2 Notation

A message is shown as a horizontal solid arrow from the lifeline of one object to the lifeli
another object. In case of a message from an object to itself, the arrow may start and finish
same object symbol. The arrow is labeled with the name of the message (operation or sign
its argument values. The arrow may also be labeled with a sequence number to show the s
of the message in the overall interaction. Sequence numbers are often omitted in sequen
grams, in which the physical location of the arrow shows the relative sequences, but they a
essary in collaboration diagrams. Sequence numbers are useful on both kinds of diagrams f
tifying concurrent threads of control. A message may also be labeled with a guard condition
UML v 1.1, Notation Guide 85

Sequence Diagrams

th only

arrow.

 end
ssages;
ontrol
itly.

 (wait
no-wait

ired to
n and
mption
g else
 slanted

ed by
nstruct

ion. For
ocedure,
 there
 may be
 can be

-level

vation
ntrol
 with
ished
7.5.3 Presentation options

Variation: Asynchronous. An asynchronous message is drawn with a half-arrowhead (one wi
one wing instead of two).

Variation: Call. A procedure call is drawn as a full arrowhead. A return is shown as a dashed

Variation: In a procedural flow of control, the return arrow may be omitted (it is implicit at the
of an activation). It is assumed that every call has a paired return after any subordinate me
the return value can be shown on the initial message line. For nonprocedural flow of c
(including parallel processing and asynchronous messages) returns should be shown explic

Variation: In a concurrent system, a full arrowhead shows the yielding of a thread of control
semantics) and a half arrowhead shows the sending of a message without yielding control (
semantics).

Variation: Normally message arrows are drawn horizontally. This indicates the duration requ
send the message is “atomic”, that is, it is brief compared to the granularity of the interactio
that nothing else can “happen” during the message transmission. This is the correct assu
within many computers. If the message requires some time to arrive, during which somethin
can occur (such as a message in the opposite direction) then the message arrow may be
downward so that the arrowhead is below the arrow tail.

Variation: Branching. A branch is shown by multiple arrows leaving a single point, each label
a guard condition. Depending on whether the guard conditions are mutually exclusive, the co
may represent conditionality or concurrency.

Variation: Iteration. A connected set of messages may be enclosed and marked as an iterat
a scenario, the iteration indicates that the set of messages can occur multiple times. For a pr
the continuation condition for the iteration may be specified at the bottom of the iteration. If
is concurrency, then some messages in the diagram may be part of the iteration and others
single execution. It is desirable to arrange a diagram so that the messages in the iteration
enclosed together easily.

Variation: A lifeline may subsume an entire set of objects on a diagram representing a high
view.

Variation: A distinction may be made between a period during which an object has a live acti
and a period in which the activation is actually computing. The former (during which it has co
information on a stack but during which control resides in something that it called) is shown
the ordinary double line; the latter (during which it is the top item on the stack) may be distingu
by shading the region.

7.5.4 Mapping

See Section 7.2.5.
86 UML v1.1, Notation Guide

Sequence Diagrams

 be used
mic) or

r a tran-
message
 time at
ended
uence
e may
ge line is

agram.
7.6 TRANSITION TIMES

7.6.1 Semantics

A message may have a sending time and a receiving time. These are formal names that may
within constraint expressions. The two may be the same (if the message is considered ato
different (if its delivery is nonatomic).

7.6.2 Notation

A transition instance (such as a message in a sequence diagram or a collaboration diagram o
sition in a state machine) may be given a name. The name represents the time at which a
is sent (example: A). In cases where the delivery of the message in not instantaneous, the
which the message is received is indicated by the transition name with a prime sign app
(example: A'). The name may be shown in the left margin aligned with the arrow (on a seq
diagram) or near the tail of the message flow arrow (on a collaboration diagram). This nam
be used in constraint expressions to designate the time the message was sent. If the messa
slanted, then the primed-name indicates the time at which the message is received.

Constraints may be specified by placing Boolean expressions in braces on the sequence di

7.6.3 Example

See Figure 35.

7.6.4 Mapping

See Section 7.2.5.
UML v 1.1, Notation Guide 87

Collaboration Diagrams

on and
lation-

me as a
etermined

ction to
ee only

ses, pro-
truct is

of pur-
g.

ich their
iagrams
’s static

different
 param-
 in each
ructure
s most
 are free

ration

ts and
a single
ly. The

ssage
8. COLLABORATION DIAGRAMS

A collaboration diagram shows an interaction organized around the objects in the interacti
their links to each other. Unlike a sequence diagram, a collaboration diagram shows the re
ships among the object roles. On the other hand, a collaboration diagram does not show ti
separate dimension, so the sequence of messages and the concurrent threads must be d
using sequence numbers.

8.1 COLLABORATION

8.1.1 Semantics

Behavior is implemented by sets of objects that exchange messages within an overall intera
accomplish a purpose. To understand the mechanisms used in a design, it is important to s
the objects and the messages involved in accomplishing a purpose or a related set of purpo
jected from the larger system of which they are part for other purposes. Such a static cons
called a collaboration.

A collaboration is a set of participants and relationships that are meaningful for a given set
poses. The identification of participants and their relationships does not have global meanin

A collaboration may be attached to an operation or a use case to describe the context in wh
behavior occurs. The actual behavior may be specified in interactions, such as sequence d
or collaboration diagrams. A collaboration may also be attached to a class to define the class
structure.

A parameterized collaboration represents a design construct that can be used repeatedly in
designs. The participants in the collaboration, including the classes and relationships, can be
eters of the generic collaboration. The parameters are bound to particular model elements
instantiation of generic collaboration. Such a parameterized collaboration can capture the st
of a design pattern (note that a design pattern involves more than structural aspects). Wherea
collaborations can be anonymous because they are attached to a named entity, patterns
standing design constructs that must have names.

A collaboration may be expressed at different levels of granularity. A coarse-grained collabo
may be refined to produce another collaboration that has a finer granularity.

8.1.2 Notation

The description of behavior involves two aspects: the structural description of its participan
the behavioral description of its execution. The two aspects are often described together on
diagram but at times it is useful to describe the structural and behavioral aspects separate
structure of objects playing roles in a behavior and their relationships is called a collaboration. A
collaboration shows the context in which interaction occurs. The dynamic behavior of the me
88 UML v1.1, Notation Guide

Collaboration Diagrams

n inter-
eld dif-

rticular
in a col-

tached
luding
ribe an
rdinary
stroyed
ion and
rom the

 proce-
 to
head

a line
cannot

tribute

a proce-
nesting.
sequence

,
pera-
sequences exchanged among objects to accomplish a specific purpose is called an interaction. A
collaboration is shown by a collaboration diagram without messages. By adding messages, a
action is shown. Different sets of messages may be applied to the same collaboration to yi
ferent interactions.

8.2 COLLABORATION DIAGRAM

8.2.1 Semantics

A collaboration diagram represents a Collaboration, which is a set of objects related in a pa
context, and an Interaction, which is a set of messages exchanged among the objects with
laboration to effect a desired operation or result.

8.2.2 Notation

A collaboration diagram is a graph of references to objects and links with message flows at
to its links. The diagram shows the objects relevant to the performance of an operation, inc
objects indirectly affected or accessed during the operation. The collaboration used to desc
operation includes its arguments and local variables created during its execution as well as o
associations. Objects created during the execution may be designated as {new}; objects de
during the execution maybe designated as {destroyed}; objects created during the execut
then destroyed may be designated as {transient}. These changes in life state are derivable f
detailed messages sent among the objects; the are provided as notational conveniences.

The diagram also shows the links among the objects, including transient links representing
dure arguments, local variables, and self links. Because collaboration diagrams are often used
help design procedures, they typically show navigability using arrowheads on links. (An arrow
on a line between object boxes indicates a link with one-way navigability. An arrow next to
indicates a message flowing in the given direction over the link. Obviously a message arrow
flow backwards over a one-way link.)

Individual attribute values are usually not shown explicitly. If messages must be sent to at
values, the attributes should be modeled using associations instead.

The internal messages that implement a method are numbered starting with number 1. For
dural flow of control the subsequent message numbers are nested in accordance with call
For a nonprocedural sequence of messages exchanged among concurrent objects all the
numbers are at the same level (that is, they are not nested).

A collaboration diagram without messages shows the context in which interactions can occur
without showing any specific interactions. It might be used to show the context for a single o
tion or even for all of the operations of a class or group of classes.
UML v 1.1, Notation Guide 89

Collaboration Diagrams

pose it
n as a
esign

the pat-

de
havioral
8.2.3 Example

Figure 37. Collaboration diagram

8.2.4 Mapping

A collaboration diagram maps to a Collaboration with a superimposed Interaction.

8.3 PATTERN STRUCTURE

8.3.1 Semantics

A collaboration can be used to specify the implementation of design constructs. For this pur
is necessary to specify its context and interactions. It is also possible to view a collaboratio
single entity from the “outside.” For example, this could be used to identify the presence of d
patterns within a system design. A pattern is a parameterized collaboration; in each use of
tern, actual classes are substituted for the parameters in the pattern definition.

Note that patterns as defined in Design Patterns by Gamma, Helm, Johnson, and Vlissides inclu
much more than structural descriptions. UML describes the structural aspects and some be

:Controller

wire: Wire

1: displayPositions(window)

left: Bead

wire

redisplay()
:Window

i-1 i

right: Bead

1.1.1b: r1:=position()1.1.1a: r0 := position()

1.1.2: create(r0,r1)

window

«parameter»window

1.1*[i:=1..n]: drawSegment(i) :Line {new}
«local»line

1.1.3: display(window)

1.1.3.1: add(self)

 contents {new}

«self»
90 UML v1.1, Notation Guide

Collaboration Diagrams

atterns,

tion. A
ding on
ration.
ents
meters
efore a
es that

 by an
rameter
 name
aspects of design patterns, but UML notation does not include other important aspects of p
such as usage trade-offs or examples. These must be expressed in text or tables.

8.3.2 Notation

A use of a collaboration is shown as a dashed ellipse containing the name of the collabora
dashed line is drawn from the collaboration symbol to each of the objects or classes (depen
whether it appears within an object diagram or a class diagram) that participate in the collabo
Each line is labeled by the role of the participant. The roles correspond to the names of elem
within the context for the collaboration; such names in the collaboration are treated as para
that are bound to specify elements on each occurrence of the pattern within a model. Ther
collaboration symbol can shown the use of a design pattern together with the actual class
occur in that particular use of the pattern.

Figure 38. Use of a collaboration

8.3.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol attached
arrow to the pattern occurrence symbol, the corresponding Class is bound to the template pa
that is the type association target of the ClassifierRole in the Pattern with the name equal to the
on the arrow.

Observer

SlidingBarIcon
handler

CallQueue subject

queue: List of Call
source: Object
waitAlarm: Alarm

reading: Real
color: Color
range: Interval

handler.reading = length (subject.queue)

capacity: Integer

range = (0 .. capacity)
UML v 1.1, Notation Guide 91

Collaboration Diagrams

 a par-
collab-

ighbor
 must be

eference
abo-
r roles
 roles

 usu-
 added
opera-
e col-
peration
ly during
nvolved
, mes-

hows a

f the
can be

n are not
oration

labora-
 are rel-
llabora-
t from

usiness
8.4 COLLABORATION CONTENTS

The contents of a collaboration are modeling elements that interact within a given context for
ticular purpose, such as performing an operation or a use case; it is a “society of objects”. A
oration is a fragment of a larger complete model that is intended for a particular purpose.

8.4.1 Semantics

A collaboration shows one or more roles together with their contents, associations, and ne
roles, plus additional relationships and classes as needed. To use a collaboration, each role
bound to an actual class that can support the operations required of the role.

8.4.2 Notation

A collaboration is shown as a graph of class references and association references. Each r
is a role of the collaboration; that is, each entity is playing a role within the context of the coll
ration, a role that is only part of its full description. The names of the objects represent thei
within the collaboration. A collaboration is a prototype; in each use of the collaboration the
are bound to actual objects. There are several ways to show the diagram:

Methods. If the collaboration shows the implementation of an operation (a method), then it is
ally drawn as a separate collaboration diagram including context to which message flow is
to obtain an interaction. The collaboration for the operation includes the target object of the
tion and any other objects that it calls on, directly or indirectly, to implement the operation. Th
laboration includes the objects present before the operation, the objects present after the o
(these may be the same or mostly the same as the ones before), and objects that exist on
the operation; these may be marked as «new», «destroyed», and «transient». Only objects i
in the operation implementation need be shown. To show the implementation of an operation
sage flows are superimposed on the links between objects in the collaboration; each flow s
step within the method for the operation (see Section 8.9).

Classes. A collaboration is normally defined for a single operation. By taking the union of all o
collaborations for all of the operations of a class, an overall collaboration for the entire class
shown. This collaboration shows all of the context for the implementation of the class.

In both cases the usual assumption is that objects and classes not shown on the collaboratio
affected by the operation. (It is not always safe to assume that all of the objects on a collab
diagram are used by the operation, however.)

Different collaborations may be devised for the same class for different purposes. Each col
tion may show a somewhat different subset of attributes, operators, and related objects that
evant to each purpose. Inasmuch as actual operations often fall into related groups, each co
tion might specify a consistent view shared by several operations that is somewhat differen
the view needed by other operations on the same type. Similarly, the model of types in a b
92 UML v1.1, Notation Guide

Collaboration Diagrams

a par-

ion) by
 implicit
accom-

 among
ntation
 is, the
nces are
or con-
 a par-

 formats
ipating
 do not
l aspect
tion of
s show

ticular
d in the
organization can often be divided into several collaborations, each from the point of view of
ticular stakeholder.

8.5 INTERACTIONS

A collaboration of objects interacts to accomplish a purpose (such as performing an operat
exchanging messages. The messages may include both signals and calls, as well as more
interaction through conditions and time events. A specific pattern of message exchanges to
plish a specific purpose is called an interaction.

8.5.1 Semantics

An interaction is a behavioral specification that comprises a sequence of message exchanges
a set of objects within a collaboration to accomplish a specific purpose, such as the impleme
of an operation. To specify an interaction, it is first necessary to specify a collaboration, that
establish the objects that interact and their relationships. Then the possible interaction seque
specified. These can be specified in a single description containing conditionals (branches
ditional signals), or they can be specified by supplying multiple descriptions, each describing
ticular path through the possible execution paths.

8.5.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both diagram
show the execution of collaborations. However, sequence diagrams only show the partic
objects and do not show their relationships to other objects or their attributes, therefore they
fully show the context aspect of a collaboration. Sequence diagrams do show the behaviora
of collaborations explicitly, including the time sequence of message and explicit representa
method activations. Sequence diagrams are described in Chapter 7. Collaboration diagram
the full context of an interaction, including the objects and their relationships relevant to a par
interaction, so they are often better for design purposes. Collaboration diagrams are describe
following sections.

8.5.3 Example

See Collaboration Diagram section for a collaboration underlying an interaction.
UML v 1.1, Notation Guide 93

Collaboration Diagrams

y play
ciation-

r, that
e

shown.

rmally
 precede

r as an
 class.

upper

 corre-
ence of

y indi-

 name.
8.6 COLLABORATION ROLES

8.6.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object that ma
the role and describes its relationships to other Roles. There are ClassifierRoles and Asso
Roles.

8.6.2 Notation

A collaboration role is shown using the notation for an object or a link. Keep in mind, howeve
in the context of a collaboration these represent roles that bind to actual objects or links when th
collaboration is used, not actual objects and links.

A class role is shown as a class rectangle symbol. Normally only the name compartment is
The name compartment contains the string:

classRoleName : Classifiername

The classname can include a full pathname of enclosing packages, if necessary (a tool will no
permit shortened pathnames to be used when they are unambiguous). The package names
the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window
A stereotype for the class may be shown textually (in guillemets above the name string) o
icon in the upper right corner. The stereotype for an object must match the stereotype for its

A class role representing a set of objects includes a multiplicity indicator (such as “*”) in the
right corner of the class box.

An association role is shown as a path between two class role symbols. If the name of the
sponding association is included it is underlined. Rolenames are not underlined. Even in abs
underlining a line connecting class roles is an association role.

If one end of the association role path is connected to a multiple class role, then a multiplicit
cator may be placed on that end to emphasize the multiplicity.

8.6.3 Presentation options

The name of the object may be omitted. In this case the colon should be kept with the class
This represents an anonymous object of the given class given identity by its relationships.

The class of the object may be suppressed (together with the colon).
94 UML v1.1, Notation Guide

Collaboration Diagrams

es the
es

o show
 model
ed to

y and
dicates
ct.

: an iter-
h indi-
 mes-
l object;
lied.
l code)
tioned

iobject
simple

 which
8.6.4 Example

See Figure 37.

8.6.5 Mapping

The object symbol in a collaboration diagram maps to a ClassifierRole whose name match
object part of the name string; the role has a type Association to a Classifier whose name match
the type part of the name string.

8.7 MULTIOBJECT

8.7.1 Semantics

A multiobject represents a set of objects on the “many” end of an association. This is used t
operations that address the entire set, rather than a single object in it. The underlying static
is unaffected by this grouping. This corresponds to an association with multiplicity “many” us
access a set of associated objects.

8.7.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slightly verticall
horizontally to suggest a stack of rectangles. A message arrow to the multiobject symbol in
a message to the set of objects, for example, a selection operation to find an individual obje

To perform an operation on each object in a set of associated objects requires two messages
ation to the multiobject to extract links to the individual objects, then a message sent to eac
vidual object using the (temporary) link. This may be elided on a diagram by combining the
sages into a single message that includes an iteration and an application to each individua
the target rolename takes a “many” indicator (*) to show that many individual links are imp
Although this may be written as a single message, in the underlying model (and in any actua
it requires the two layers of structure (iteration to find links, message using each link) men
previously.

An object from the set is shown as a normal object symbol, but it may be attached to the mult
symbol using a composition link to indicate that it is part of the set. A message arrow to the
object symbol indicates a message to an individual object.

Typically a selection message to a multiobject returns a reference to an individual object, to
the original sender then sends a message.
UML v 1.1, Notation Guide 95

Collaboration Diagrams

itly

ssive
y send
gram, a

on.

al kinds

active
8.7.3 Example

Figure 39. Multiobject

8.7.4 Mapping

A multiobject symbol maps to a ClassifierRole with multiplicity “many” (or whatever is explic
specified). In other respects it maps the same as an object symbol.

8.8 ACTIVE OBJECT

An active object is one that owns a thread of control and may initiate control activity. A pa
object is one that holds data but that does not initiate control. However, a passive object ma
messages in the process of processing a request that it has received. In a collaboration dia
ClassifierRole that is an active class represents the active objects that occur during executi

8.8.1 Semantics

An active object is an object that owns a thread of control. Processes and tasks are tradition
of active objects.

8.8.2 Notation

A role for an active object is shown as an object symbol with a heavy border. Frequently
object roles are shown as composites with embedded parts.

The property keyword {active} may also be used to indicate an active object.

servers
:Server

:Server
aServer {local}

client

1: aServer:=find(specs)

2: process(request)
96 UML v1.1, Notation Guide

Collaboration Diagrams

ciation
8.8.3 Example

Figure 40. Composite active object

8.8.4 Mapping

An active object symbol maps as an object symbol does, with the addition that the active property
is set.

A nested object symbol (active or not) maps into a Classifierrole that has a composition asso
to the roles corresponding to its contents, as described under Composition.

job

:Factory
JobMgr

:Factory
Scheduler

currentJob
:TransferJob

:Factory Manager

1: start(job)

A2,B2 / 2: completed(job)

{local} job

:Oven:Robot

1 / A1: start(job)
1 / B1: start(job)

A2: completedB2: completed
UML v 1.1, Notation Guide 97

Collaboration Diagrams

n of a
n active

 is used
 arrow
.

s of

ence
 with

tive
uence

p in

d to
roce-

ut

ng of the
y, and
8.9 MESSAGE FLOWS

8.9.1 Semantics

A message flow is the sending of a message from one object to another. The implementatio
message may take various forms, such as a procedure call, the sending of a signal betwee
threads, the explicit raising of events, and so on.

8.9.2 Notation

A message flow is shown as a labeled arrow placed near a link. The meaning is that the link
to transport or otherwise implement the delivery of the message to the target object. The
points along the link in the direction of the target object (the one that receives the message)

Control flow type. The following arrowhead variations may be used to show different kind
messages:

filled solid arrowhead
procedure call or other nested flow of control. The entire nested sequ
is completed before the outer level sequence resumes. May be used
ordinary procedure calls. May also be used with concurrently ac
objects when one of them sends a signal and waits for a nested seq
of behavior to complete.

stick arrowhead
Flat flow of control. Each arrow shows the progression to the next ste
sequence. Normally all of the messages are asynchronous.

half stick arrowhead
asynchronous flow of control. Used instead of the stick arrowhea
explicitly show an asynchronous message between two objects in a p
dural sequence.

other variations
other kinds of control may be shown, such as “balking” or “time-out”, b
these are treated as extensions to the UML core

Message label. The label has the following syntax:

predecessor guard-condition sequence-expression return-value := message-name argument-list

The label indicates the message sent, its arguments and return values, and the sequenci
message within the larger interaction, including call nesting, iteration, branching, concurrenc
synchronization.
98 UML v1.1, Notation Guide

Collaboration Diagrams

a slash

atch the

quence
he guard

 implicit
fix form
 number

llowed
ion. If
llowing

cedural
esting.

re con-
thin acti-

essages

use may
eant to
ribe its

ndition
ing lan-
Predecessor. The predecessor is a comma-separated list of sequence numbers followed by
(‘/’):

sequence-number ‘,’ . . . ‘/’

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must m
sequence number of another message.

The meaning is that the message flow is not enabled until all of the message flows whose se
numbers are listed have occurred (a thread can go beyond the required message flow and t
remains satisfied). Therefore the guard condition represents a synchronization of threads.

Note that the message corresponding to the numerically preceding sequence number is an
predecessor and need not be explicitly listed. All of the sequence numbers with the same pre
a sequence; the numerical predecessor is the one in which the final term is one less. That is,
3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expression. The sequence-expression is a dot-separated list of sequence-terms fo
by a colon (‘:’). Each term represents a level of procedural nesting within the overall interact
all the control is concurrent, then nesting does not occur. Each sequence-term has the fo
syntax:

[integer | name] [recurrence]

The integer represents the sequential order of the message within the next higher level of pro
calling. Messages that differ in one integer term are sequentially related at that level of n
Example: Message 3.1.4 follows message 3.1.3 within activation 3.1.

The name represents a concurrent thread of control. Messages that differ in the final name a
current at that level of nesting. Example: message 3.1a and message 3.1b are concurrent wi
vation 3.1. All threads of control are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more m
that are executed depending on the conditions involved. The choices are:

‘*’ ‘[’ iteration-clause ‘]’ An iteration

‘[’ condition-clause ‘]’ A branch

An iteration represents a sequence of messages at the given nesting depth. The iteration cla
be omitted (in which case the iteration conditions are unspecified). The iteration-clause is m
be expressed in pseudocode or an actual programming language; UML does not presc
format. An example would be: *[i := 1..n].

A condition represents a message that whose execution is contingent on the truth of the co
clause. The condition-clause is meant to be expressed in pseudocode or an actual programm
guage; UML does not prescribe its format. An example would be: [x > y].
UML v 1.1, Notation Guide 99

Collaboration Diagrams

 an iter-

entially.
 the

 level of

e of an

hin the
 to sub-
signment

event

eration
s it may
edural

articular

paren-
ession in
essions
s starting
m).

r a mes-
it has a
e (for a
kens is

ge, such
x, how-
Note that a branch is notated the same as an iteration without a star; one might think of it as
ation restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be executed sequ
There is also the possibility of executing them concurrently. The notation for this is to follow
star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels. Each
structure specifies its own iteration within the enclosing context.

Signature. A signature is a string that indicates the name, the arguments, and the return valu
operation, message, or signal. These have the following properties:

Return-value. This is a list of names that designates the values returned by the message wit
subsequent execution of the overall interaction. These identifiers can be used as arguments
sequent messages. If the message does not return a value, then the return value and the as
operator are omitted.

Message-name. This is the name of the event raised in the target object (which is often the
of requesting an operation to be performed). It may be implemented in various ways, one of which
is an operation call. If it is implemented as a procedure call, then this is the name of the op
and the operation must be defined on the class of the receiver or inherited by it. In other case
be the name of an event that is raised on the receiving object. In normal practice with proc
overloading, both the message name and the argument list types are required to identify a p
operation.

Argument list. This is a comma-separated list of arguments (actual parameters) enclosed in
theses. The parentheses can be used even if the list is empty. Each argument is an expr
pseudocode or an appropriate programming language (UML does not prescribe). The expr
may use return values of previous messages (in the same scope) and navigation expression
from the source object (that is, attributes of it and links from it and paths reachable from the

8.9.3 Presentation options

Instead of text expressions for arguments and return values, data tokens may be shown nea
sage. A token is a small circle labeled with the argument expression or return value name;
small arrow on it that points along the message (for an argument) or opposite the messag
return value). Tokens represent arguments and return values. The choice of text syntax or to
a presentation option.

The syntax of messages may instead be expressed in the syntax of a programming langua
as C++ or Smalltalk. All of the expressions on a single diagram should use the same synta
ever.
100 UML v1.1, Notation Guide

Collaboration Diagrams

 to the
w type

rs of the
 as well as
i.e., 1.2.2
umber is

e

urrence

CallAc-

with the

return
8.9.4 Example

See Figure 37 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple message

1.3.1: p:= find(specs) nested call with return value

[x < 0] 4: invert (x, color) conditional message

A3,B4/ C3.1*: update () synchronization with other threads, iteration

8.9.5 Mapping

A message flow symbol maps into a Message between the ClassifierRoles corresponding
boxes connected by the association path bearing the message flow symbol. The control flo
sets the corresponding Message properties.

The predecessor expression together with the sequence expression determine the predecessor and
activation (caller) associations between the Message and other messages. The predecesso
Message are the messages corresponding to the sequence numbers in the predecessor list
the message corresponding to the immediate preceding sequence number as the Message (
is the one preceding 1.2.3). The caller of the Message is the Message whose sequence n
truncated by one position (i.e., 1.2 is the caller of 1.2.3).

The return value maps into a message from the called object to the caller with direction return. Its
predecessor is the final message within the procedure. Its activation is the message that called th
procedure.

The recurrence expression, the iteration clause, and the condition clause determine the rec
value in the Message.

The operation name and the form of the signature determine the Operation attached to the
tion associated with the Message.

The arguments of the signature determine the arguments associated with the CallAction.

In a procedural interaction, each message flow symbol also maps into a second Message
properties (synchronous, reply) representing the return flow. This Message has an activation Asso-
ciation to the original call Message. Its associated Action is a ReturnAction bearing the
values as arguments (if any).
UML v 1.1, Notation Guide 101

Collaboration Diagrams

stroyed.

t
-
, but the

, each
 cre-

 target
se the
8.10 CREATION/DESTRUCTION MARKERS

8.10.1 Semantics

During the execution of an interaction some objects and links are created and some are de
The creation and destruction of elements can be marked.

8.10.2 Notation

An object or link that is created during an interaction has the keyword new as a constraint. An objec
or link that is destroyed during an interaction has the keyword destroyed as a constraint. The key
word may be used even if the element has no name. Both keywords may be used together
keyword transient may be used in place of new destroyed.

8.10.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For example
kind of lifetime might be shown in a different color. A tool may also use animation to show the
ation and destruction of elements and the state of the system at various times.

8.10.4 Example

See Figure 37.

8.10.5 Mapping

Creation or destruction indicators map into CreateActions or DestroyActions actions on the
ClassifierRoles or into TerminateActions. The actions correspond to messages that cau
changes. These status indicators are merely summaries of the total actions.
102 UML v1.1, Notation Guide

Statechart Diagrams

 through

’s state-
he tra-
chines

f a given

ls and the
in subdi-
9. STATECHART DIAGRAMS

A statechart diagram shows the sequences of states that an object or an interaction goes
during its life in response to received stimuli, together with its responses and actions.

The semantics and notation described in this chapter are substantially those of David Harel
charts with modifications to make them object-oriented. His work was a major advance on t
ditional flat state machines. Statechart notation also implements aspects of both Moore ma
and Mealy machines, traditional state machine models.

9.1 STATECHART DIAGRAM

9.1.1 Semantics

A state machine is a graph of states and transitions that describes the response of an object o
class to the receipt of outside stimuli. A state machine is attached to a class or a method

9.1.2 Notation

A statechart diagram represents a state machine. The states are represented by state symbo
transitions are represented by arrows connecting the state symbols. States may also conta
agrams by physical containment and tiling. .
UML v 1.1, Notation Guide 103

Statechart Diagrams

Class or

some
 finite

ctivity
y a pair
 on exit
Figure 41. State diagram

9.1.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be attached to a
a Method but there is no explicit notation for this.

9.2 STATES

9.2.1 Semantics

A state is a condition during the life of an object or an interaction during which it satisfies
condition, performs some action, or waits for some event. An object remains in a state for a
(non-instantaneous) time.

Actions are atomic and non-interruptible. A state may correspond to ongoing activity. Such a
is expressed as a nested state machine. Alternately, ongoing activity may be represented b
of actions, one that starts the activity on entry to the state and one that terminates the activity
from the state.

DialTone
Dialing

Talking
Ringing

Busy

dial digit(n)

connected

callee answers

Idle

busy

lift
receiver

caller
hangs up

callee
hangs up

Active

dial digit(n)

/get dial tone

do/ play busy
tone

do/ play ringing
tone/enable speech

/disconnect

do/ play dial tone

Pinned

callee
answers

Connecting

dial digit(n)[valid]

Timeout
do/ play message

dial digit(n)[invalid]

/connectInvalid
do/ play message

[incomplete]after (15 sec.)

after (15 sec.)
104 UML v1.1, Notation Guide

Statechart Diagrams

ng state
tion of

mple-
sing

nts. The

es are
e same

ponse
rmat:

be used

ey are
tate
es when

ters of

state.
. When
 begins
y exit

ed and
Each subregion of a state may have initial states and final states. A transition to the enclosi
represents a transition to the initial state. A transition to a final state represents the comple
activity in the enclosing region; completion of activity in all concurrent regions represents co
tion of activity by the enclosing state and triggers a “completion of activity” event” on the enclo
state. Completion of the outermost state of an object corresponds to its death.

9.2.2 Notation

A state is shown as a rectangle with rounded corners. It may have one or more compartme
compartments are all optional. They are as follows:

Name compartment. Holds the (optional) name of the state as a string. States without nam
“anonymous” and are all distinct It is undesirable to show the same named state twice in th
diagram, however, as confusion may ensue.

Internal transition compartment. Holds a list of internal actions or activities performed in res
to events received while the object is in the state, without changing state. These have the fo

event-name argument-list ‘[’ guard-condition ‘]’‘/’ action-expression

Each event name or pseudo-event name may appear at most once in a single state.

The following special actions have the same form but represent reserved words that cannot
for event names:

‘entry’ ‘/’ action-expressionAn atomic action performed on entry to the state

‘exit’ ‘/’ action-expressionAn atomic action performed on exit from the state

Entry and exit actions may not have arguments or guard conditions (because th
invoked implicitly, not explicitly). However, the entry action at the top level of the s
machine for a class may have parameters that represent the arguments that it receiv
it is created.

Action expressions may use attributes and links of the owning object and parame
incoming transitions (if they appear on all incoming transitions).

The following keyword represents the invocation of a nested state machine:

‘do’ ‘/’ machine-name (argument-list)

The machine-name must be the name of a state machine that has an initial and final
If the nested machine has parameters, then the argument list must match correctly
this state is entered, after any entry action then execution of the nested state machine
with its initial state. When the nested state machine reaches its final state, then an
action in the current state is performed and the current state is considered complet
may take a transition based on implicit completion of activity.
UML v 1.1, Notation Guide 105

Statechart Diagrams

tate.

me map
aps into

is the
aps the

ine.

n-
e event
he Tran-

 these

sed to
9.2.3 Example

Figure 42. State

9.2.4 Mapping

A state symbol maps into a State. See the next section for further details on which kind of s

The name string in the symbol maps to the name of the state. Two symbols with the same na
into the same state. However, each state symbol with no name (or an empty name string) m
a distinct anonymous State.

An internal action string with the name “entry” or “exit” maps into an association: the source
State corresponding to the enclosing state symbol; the target is an ActionSequence that m
action expression; the association is the Entry action or the Exit action association.

An internal action string with the name “do” maps into the invocation of a nested state mach

Any other internal action maps into an internal Association from the corresponding State to a Tra
sition. The action expression maps into the ActionSequence and Guard for the Transition. Th
name and arguments map into an Event corresponding to the event name and arguments; t
sition has a trigger Association to the Event

9.3 COMPOSITE STATES

9.3.1 Semantics

A state can be decomposed using and-relationships into concurrent substates or using or-relation-
ships into mutually exclusive disjoint substates. A given state may only be refined in one of
two ways. Its substates can may be refined in the same way or the other way.

A newly-created object starts in its initial state. The event that creates the object may be u
trigger a transition from the initial state symbol.

Typing Password

help / display help

entry / set echo invisible
exit / set echo normal
character / handle character
106 UML v1.1, Notation Guide

Statechart Diagrams

al tran-
holding
 horizon-

e state
ch sub-
tes. The
 line.

 within

e tran-
it must
transi-

It rep-
losing
ition).
An object that transitions to its outermost final state ceases to exist.

9.3.2 Notation

An expansion of a state shows its fine structure. In addition to the (optional) name and intern
sition compartments, the state may have an additional compartment that contains a region
a nested diagram. For convenience and appearance, the text compartments may be shrunk
tally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region of th
using dashed lines to divide it into subregions. Each subregion is a concurrent substate. Ea
region may have an optional name and must contain a nested state diagram with disjoint sta
text compartments of the entire state are separated from the concurrent substates by a solid

An expansion of a state into disjoint substates is shown by showing a nested state diagram
the graphic region.

An initial (pseudo)state is shown as a small solid filled circle. In a top-level state machine, th
sition from an initial state may be labeled with the event that creates the object; otherwise
be unlabeled. If it is unlabeled, it represents any transition to the enclosing state. The initial
tion may have an action. The initial state is a notational device; an object may not be in such a state
but must transition to an actual state.

A final (pseudo)state is shown as a circle surrounding a small solid filled circle (a bull’s eye).
resents the completion of activity in the enclosing state and it triggers a transition on the enc
state labeled by the implicit activity completion event (usually displayed as an unlabeled trans

9.3.3 Example

Figure 43. Sequential substates

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone
UML v 1.1, Notation Guide 107

Statechart Diagrams

leState;

urrence
 exclu-

 This is
-
es from
valu-
Figure 44. Concurrent substates

9.3.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into a Simp
if it is tiled by dashed lines into subregions then it maps into a CompositeState with the isConcurrent
value true, otherwise it maps into a CompositeState with the isConcurrent value false.

An initial state symbol or a final state symbol map into a Pseudostate of kind initial or final.

9.4 EVENTS

9.4.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an occ
that may trigger a state transition. Events may be of several kinds (not necessarily mutually
sive):

a designated condition becoming true (usually described as a boolean expression).
a ChangeEvent. These are notated with the keyword when followed by a boolean expres
sion in parentheses. The event occurs whenever the value of the expression chang
false to true. Note that this is different from a guard condition: A guard condition is e

Lab1 Lab2

Term

lab done

project done

Passed

Incomplete

Project

Final pass

Test

Failed
fail

lab
done

Taking Class
108 UML v1.1, Notation Guide

Statechart Diagrams

 the

 these

 by the
from a

he cur-
ated as
sage of

iagrams

m. The
nal. This

nt or any

l-

o the

.
tice it
ust be

l. These
 in the
rarchy.
ated once whenver its event fires; if it is false then the transition does not occur and
event is lost. Example: when (balance < 0).

receipt of an explicit signal from one object to another. This is a SignalEvent. One of
is notated by the signature of the event as a trigger on a transition.

receipt of a call for an operation by an object. This is a CallEvent. These are notated
signature of the operation as a trigger on a transitions. There is no visual difference
signal event; it is assumed that the names with distinguish them.

passage of a designated period of time after a designated event (often the entry of t
rent state) or the occurrence of a given date/time. This is a TimeEvent. These are not
time expressions as triggers on transitions. One common time expression is the pas
time since the entry to the current state; this is notated with the keyword after followed by
an amount of time in parentheses. Example: after (10 seconds).

The event declaration has scope within the package it appears in and may be used in state d
for classes that have visibility inside the package. An event is not local to a single class.

9.4.2 Notation

A signal or call event can be defined using the following format:

event-name ‘(‘ comma-separated-parameter-list ‘)’

A parameter has the format:

parameter-name ‘:’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class diagra
parameters are specified as attributes. A signal can be specified as a subclass of another sig
indicates that an occurrence of the subevent triggers any transition that depends on the eve
of its ancestors.

An elapsed-time event can be specified with the keyword after followed by an expression that eva
uates (at modeling time) to an amount of time, such as “after (5 seconds)” or after (10 seconds
since exit from state A)”. If no starting point is indicated, then it is the time since the entry t
current state. Other time events can be specified as conditions, such as when (date = Jan. 1, 2000)..

A condition becoming true is shown with the keyword when followed by a boolean expression
This may be regarded as a continuous test for the condition until it is true, although in prac
would only be checked on a change of values (and there are ways to determine when it m
check). This is mapped into a ChangeEvent in the model.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle symbo
define signal names that may be used to trigger transitions. Their parameters are shown
attribute compartment. They have no operations. They may appear in a generalization hie
Note that they are not real classes and may not appear in relationships to real classes.
UML v 1.1, Notation Guide 109

Statechart Diagrams

n by the
es map

it refer-
ing any
9.4.3 Example

Figure 45. Signal declaration

9.4.4 Mapping

A class box with stereotype «signal» maps into a Signal; the name and parameters are give
name string and the attribute list of the box. Generalization arrows between signal class box
into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an implic
ence of the Event with the given name. It is an error if various uses of the same name (includ
explicit declarations) do not match.

UserInput
device

Mouse

location

Button
Keyboard
Character

character

InputEvent

time

Control Graphic

PunctuationAlphanumericSpace

Mouse Mouse
Button
Down

Button
Up

«signal»

«signal»

«signal» «signal»

«signal» «signal» «signal»

«signal» «signal»

«signal»

«signal»

Character Character
110 UML v1.1, Notation Guide

Statechart Diagrams

te will
if speci-
ger for
meters,
 sub-
tion, it is
not in
 pri-

vent
ay also
f some
d
3”; this
 overall

es. It
meters
 inter-
n may

action
9.5 SIMPLE TRANSITIONS

9.5.1 Semantics

A simple transition is a relationship between two states indicating that an object in the first sta
enter the second state and perform certain specified actions when a specified event occurs
fied conditions are satisfied. On such a change of state the transition is said to “fire”. The trig
a transition is the occurrence of the event labeling the transition. The event may have para
which are available within actions specified on the transition or within actions initiated in the
sequent state. Events are processed one at a time. If an event does not trigger any transi
simply ignored. If it triggers more than one transition within the same sequential region (i.e.,
different concurrent regions), only one will fire; the choice may be nondeterministic if a firing
ority is not specified.

9.5.2 Notation

A transition is shown as a solid arrow from one state (the source state) to another state (the target
state) labeled by a transition string. The string has the following format:

event-signature ‘[’ guard-condition ‘]’ ‘/’ action-expression ‘^’ send-clause

The event-signature describes an event with its arguments:

event-name ‘(’ parameter ‘,’ . . . ‘)’

The guard-condition is a Boolean expression written in terms of parameters of the triggering e
and attributes and links of the object that owns the state machine. The guard condition m
involve tests of concurrent states of the current machine (or explicitly designated states o
reachable object); for example, “in State1” or “not in State2”. State names may be fully qualifie
by the nested states that contain them, yielding path names of the form “State1::State2::State
may be used in case same state name occurs in different composite state regions of the
machine.

The action-expression is a procedural expression that is executed if and when the transition fir
may be written in terms of operations, attributes, and links of the owning object and the para
of the triggering event. The action-clause must be an atomic operation, that is, it may not be
ruptible; it must be executed entirely before any other actions are considered. The transitio
contain more than one action clause (with delimiter).

‘The send-clause is a special case of an action, with the format:

destination-expression ‘.’ destination-message-name ‘(‘ argument ‘.’ . . . ‘)’

The transition may contain more than one send clause (with delimiter). The relative order of
clauses and send clauses is significant and determines their execution order.
UML v 1.1, Notation Guide 111

Statechart Diagrams

 the

ig-

ection
 whose

e. See

for time
d must

ttach-
s as its

the Tran-

vent, a

 A send
The destination-expression is an expression that evaluates to an object or a set of objects.

The destination-message-name is the name of a message (operation or signal) meaningful to
destination object(s).

The destination-expression and the arguments may be written in terms of the parameters of the tr
gering event and the attributes and links of the owning object.

Branches. A simple transition may be extended to include a tree of decision symbols (see S
10.3). This is equivalent to a set of individual transitions, one for each path through the tree,
guard condition is the “and” of all of the conditions along the path.

Transition times. Names may be placed on transitions to designate the times at which they fir
the section on transition times within Section 7.6.

9.5.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location)
^ object.highlight ()

The event may be of any of the types; selecting the type depends on the syntax of the name (
events, for example) but SignalEvents and CallEvents are not distinguishable by syntax an
be discriminated by their declaration elsewhere.

9.5.4 Mapping

A transition string and the transition arrow that it labels together map into a Transition and its a
ments. The arrow connects two state symbols; the Transition has the corresponding State
source (the state at the tail) and destination (the state at the head) States in associations to
sition.

The event name and parameters map into an Event element, which may be a SignalE
CallEvent, or a TimeExpression (if it has the proper syntax). The event is attached as a trigger Asso-
ciation to the Transition.

The guard condition maps into a Guard element attached to the Transition.

An action expression maps into an ActionSequence attached as an effect Association to the Transi-
tion; the target object expression (if any) in the expression maps into a target ObjectSetExpression.
Each term in the action expression maps into an Action that is a part of the ActionSequence.
clause maps into a RaiseAction with an ObjectSetExpression for the destination.

A transition time label on a transition maps into a TimingMark attached to the Transition.
112 UML v1.1, Notation Guide

Statechart Diagrams

hroniza-

 transi-

-
he bar
these
 not

ltiple
 to the
as mul-

 pseu-
9.6 COMPLEX TRANSITIONS

A complex transition may have multiple source states and target states. It represents a sync
tion and/or a splitting of control into concurrent threads without concurrent substates.

9.6.1 Semantics

A complex transition is enabled when all of the source states are occupied. After a complex
tion fires all of its destination states are occupied.

9.6.2 Notation

A complex transition is shown as a short heavy bar (a synchronization bar, which can represent syn
chronization, forking, or both). The bar may have one or more solid arrows from states to t
(these are the source states); the bar may have one or more solid arrows from the bar to states (
are the destination states). A transition string may be shown near the bar. Individual arrows do
have their own transition strings.

9.6.3 Example

Figure 46. Complex transition

9.6.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork Pseudostate; a bar with mu
transition arrows entering it maps into a join Pseudostate. The Transitions corresponding
incoming and outgoing arrows attach to the pseudostate as if it were a regular state. If a bar h
tiple incoming and multiple outgoing arrows, then it maps into a Join connected to a Fork
dostate by a single Transition with no attachments.

Setup Cleanup

A1 A2

B2B1
UML v 1.1, Notation Guide 113

Statechart Diagrams

l state
rrent).

hin the
asked

This is
ust be
 the ini-

th. All
 within

 one or
.

If such
en the

epth to
n. On a
ne or
erefore

e
 have
labeled
a tran-
hin the
e ‘H*’
in the

cator. A
9.7 TRANSITIONS TO NESTED STATES

9.7.1 Semantics

A transition drawn to the boundary of a complex state is equivalent to a transition to its initia
(or to a complex transition to the initial states of each of its concurrent subregions if it is concu
The entry action is always performed when a state is entered from outside.

A transition from a complex state indicates a transition that applies to each of the states wit
state region (at any depth); it is “inherited” by the nested states. Inherited transitions can be m
by the presence of nested transitions with the same trigger.

9.7.2 Notation

A transition drawn to a complex state boundary indicates a transition to the complex state.
equivalent to a transition to the initial state within the complex state region; the initial state m
present. If the state is a concurrent complex state, then the transition indicates a transition to
tial state of each of its concurrent substates.

Transitions may be drawn directly to states within a complex state region at any nesting dep
entry actions are performed for any states that are entered on any transition. On a transition
a concurrent complex state, transition arrows from the synchronization bar may be drawn to
more concurrent states; any other concurrent subregions start with their default initial states

A transition drawn from a complex state boundary indicates a transition of the complex state.
a transition fires, any nested states are forcibly terminated and perform their exit actions, th
transition actions occur and the new state is established.

Transitions may be drawn directly from states within a complex state region at any nesting d
outside states. All exit actions are performed for any states that are exited on any transitio
transition from within a concurrent complex state, transition arrows may be specified from o
more concurrent states to a synchronization bar; specific states in the other regions are th
irrelevant to triggering the transition.

A state region may contain a history state indicator shown as a small circle containing an ‘H’. Th
history indicator applies to the state region that directly contains it. A history indicator may
any number of incoming transitions from outside states. It may have at most one outgoing un
transition; this identifies the default “previous state” if the region has never been entered. If
sition to the history indicator fires it indicates that the object resumes the state it last had wit
complex region; any necessary entry actions are performed. The history indicator may also b
for deep history. This indicates that the object resumes the state it last had at any depth with
complex region, rather than being restricted to the state at the same level as the history indi
region may have both shallow and deep history indicators.
114 UML v1.1, Notation Guide

Statechart Diagrams

bsumed
at do not
 shown
ary
s are not

ur or to
 shown
ition as
ansition.
e com-
).

les of
9.7.3 Presentation options

Stubbed transitions. Nested states may be suppressed. Transitions to nested states are su
to the most specific visible enclosing state of the suppressed state. Subsumed transitions th
come from an unlabeled final state or go to an unlabeled initial state may (but need not) be
as coming from or going to stubs. A stub is shown as a small vertical line drawn inside the bound
of the enclosing state. It indicates a transition connected to a suppressed internal state. Stub
used for transitions to initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state conto
an internal substate, including a transition to a stubbed state. Events should not normally be
on transitions leading from a stubbed state to an external state, however. Think of a trans
belonging to its source state; if the source state is suppressed then so are the details of the tr
Note also that a transition from a final state is summarized by an unlabeled transition from th
plex state contour (denoting the implicit event “action complete” for the corresponding state

9.7.4 Example

See Figure 44 and Figure 46 for examples of complex transitions. Following are examp
stubbed transitions and the history indicator.

Figure 47. Stubbed transitions

A C

A C

B
D

E

F

p s

t

B

r

p

r

D

W

W

may be abstracted as

u

s

s

UML v 1.1, Notation Guide 115

Statechart Diagrams

onding

icates
m.

 a single
omposite

.

etails of

from the
ram must
Figure 48. History indicator

9.7.5 Mapping

An arrow to any state boundary, nested or not, maps into a Transition between the corresp
States. Similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kind shallowHistory or deepHistory.

A stubbed transition does not map into anything in the model. It is a notational elision that ind
the presence of transitions to additional states in the model that are not visible in the diagra

9.8 SENDING MESSAGES

9.8.1 Semantics

Messages are sent by an action in an object to a target set of objects; the target set can be
object, the entire system, or some other set. The sender can be subsumed to an object, a c
object, or a class.

9.8.2 Notation

See Section 9.5 for the text syntax of sending messages that cause events for other objects

Sending such a message can also be shown visually. See Section 7.5 and Section 8.9 for d
showing messages in sequence diagrams and collaboration diagrams.

Sending a message between state diagrams may be shown by drawing a dashed arrow
sender to the receiver. Messages must be sent between objects, so this means that the diag

A C

H

A1

A2

interrupt

resume
116 UML v1.1, Notation Guide

Statechart Diagrams

 event
 diagram
e state

agrams

events

 alter-

ut the

age is
e may
target

iven
cular
gered

scope
uses the
r may
way to
be some form of object diagram containing objects (not classes). The arrow is labeled with the
name and arguments of the event that is caused by the reception of the event. Each state
must be contained within an object symbol representing a collaborating object; graphically th
diagrams may be nested physically within an object symbol, or the object enclosing one state dia-
gram may be implicit (being the object owning the main state diagram at issue). The state di
represent the states of the collaborating objects.

Note that this notation may also be used on other kinds of diagrams to show sending of
between classes or objects.

The sender symbol may be one of:

A transition. The message is sent as part of the action of firing the transition. This is an
nate presentation to the text syntax for sending messages.

An object. The message is sent by an object of the class at some point in its life, b
details are unspecified.

The receiver may be one of:

An object, including a class reference symbol containing a state diagram. The mess
received by the object and may trigger a transition on the corresponding event. Ther
be many transitions involving the event. This notation may not be used when the
object is computed dynamically; in that case a text expression must be used.

A transition. The transition must be the only transition in the object involving the g
event, or at least the only transition that could possibly be triggered by the parti
sending of the message. This notation may not be used when the transition trig
depends on the state of the receiving object and not just on the sender.

A class designation. This notation would be used to model the invocation of class-
operations, such as the creation of a new instance. The receipt of such a message ca
instantiation of a new object in its default initial state. The event seen by the receive
be used to trigger a transition from its default initial state and therefore represents a
pass information from the creator to the new object.
UML v 1.1, Notation Guide 117

Statechart Diagrams
9.8.3 Example

Figure 49. Sending messages

Controlling

OnOff

Controlling

Television

Remote Control

“power” button

TV VCR

^television.togglePower

toggle Power

“VCR”

“TV”

toggle Power

“power” button
^VCR.togglePower

togglePower

OnOff

VCR

toggle Power

toggle Power

toggle Power
118 UML v1.1, Notation Guide

Statechart Diagrams

o

on, the
he sent

o actual
Figure 50. Creating and destroying objects

9.8.4 Mapping

A send arrow to an object maps into a SendAction whose message is a Signal that corresponds t
the name on the arrow and whose target ObjectSetExpression corresponds to the target object.

If the arrow goes directly to a transition in the target object statechart, then the target ObjectSe-
tExression corresponds to the object owning the statechart containing the transition. In additi
transition in the target statechart implicitly triggers on the event being sent (i.e., the name of t
event is effectively written on the target transition).

If the sender symbol is an object, then the diagram is suggestive of the sender but has n
semantic mapping.

Unmoved

single move

capture

double move
En passant

opponent moves

Moved

create(file,rank=2)

when (piece on 8th rank)

{where piece =
Queen, Rook, Bishop, or Knight}

AlivePawn

captured

^piece.create(file,rank)
UML v 1.1, Notation Guide 119

Statechart Diagrams

n that
 of state.
tate (to
ns with

ernal

 same
he initial
ons and

n as a
ternal
9.9 INTERNAL TRANSITIONS

9.9.1 Semantics

An internal transition is a transition that remains within a single state rather than a transitio
involves two states. It represents the occurrence of an event that does not cause a change
Entering the state (from any other state not nested in the particular state) and exiting the s
any other state not nested in the particular state) are treated notationally as internal transitio
the reserved words “entry” and “exit”, but they are not really internal transitions in the int
model.

Note that an internal transition is not equivalent to a self-transition from a state back to the
state. The self-transition causes the exit and entry actions on the state to be executed and t
state to be entered, whereas the internal transition does not invoke the exit and entry acti
does not cause a change of state (including a nested state).

9.9.2 Notation

An internal transition is attached to the state rather than a transition. Graphically it is show
text string within the internal transition compartment on a state symbol. The syntax of an in
transition string is the same as for an external transition. See Section 9.5 for details.

Figure 51. State with internal transitions

9.9.3 Mapping

The mapping for internal transitions has been given in Section 9.2.4.

Typing Password

help / display help
entry / set echo invisible
exit / set echo normal
120 UML v1.1, Notation Guide

Activity Diagram

enting
rations.
n oper-

 states
tion of
 a class
cus on
 situa-
s (that

 events
10. ACTIVITY DIAGRAM

10.1 ACTIVITY DIAGRAM

10.1.1 Semantics

An activity model is a variation of a state machine in which the states are Activities repres
the performance of operations and the transitions are triggered by the completion of the ope
It represents a state machine of a procedure itself; the procedure is the implementation of a
ation on the owning class.

10.1.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of the
are action states and in which all (or at least most) of the transitions are triggered by comple
the actions in the source states. The entire activity diagram is attached (through the model) to
or to the implementation of an operation or a use case. The purpose of this diagram is to fo
flows driven by internal processing (as opposed to external events). Use activity diagrams in
tions where all or most of the events represent the completion of internally-generated action
is, procedural flow of control). Use ordinary state diagrams in situations where asynchronous
occur.
UML v 1.1, Notation Guide 121

Activity Diagram
10.1.3 Example

Figure 52. Activity diagram

Get
Cups

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Get cans
of cola

[no cola]

[found cola]

Put Filter
in Machine

Turn on
Machine

Person::Prepare Beverage

Brew coffee

Pour Coffee

Drink

^coffeePot.turnOn

light goes out
122 UML v1.1, Notation Guide

Activity Diagram

sition
itions
 tran-
 action

the two
ique

 implic-
condi-

 code. It

e com-
10.1.4 Mapping

An activity diagram maps into an ActivityModel.

10.2 ACTION STATE

10.2.1 Semantics

An action state is a shorthand for a state with an internal action and at least one outgoing tran
involving the implicit event of completing the internal action (there may be several such trans
if they have guard conditions). Action states should not have internal transitions or outgoing
sitions based on explicit events; use normal states for this situation. The normal use of an
state is to model a step in the execution of an algorithm (a procedure).

10.2.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs on
sides. The action-expression is placed in the symbol. The action expression need not be un
within the diagram.

Transitions leaving an action state should not include an event signature; such transitions are
itly triggered by the completion of the action in the state. The transitions may include guard
tions and actions.

10.2.3 Presentation options

The action may be described by natural language, pseudocode, or programming language
may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams but they are mor
monly used with activity diagrams, which are special cases of state diagrams.

10.2.4 Example

Figure 53. Activities

matrix.invert (tolerance:Real) drive to work
UML v 1.1, Notation Guide 123

Activity Diagram

to an
lly

ditions
wning

uard

ming
ith no

in such
10.2.5 Mapping

An action state symbol maps into an ActionState invoking a CallAction. This is equivalent
entry action on a regular state. There is no exit nor any internal transitions. The State is norma
anonymous.

10.3 DECISIONS

10.3.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard con
are used to indicate different possible transitions that depend on Boolean conditions of the o
object. UML provides shorthand for showing decisions.

10.3.2 Notation

A decision may be shown by labeling multiple output transitions of an action with different g
conditions.

The icon provided for a decision is the traditional diamond shape, with one or more inco
arrows and with two or more outgoing arrows, each labeled by a distinct guard condition w
event trigger. All possible outcomes should appear on one of the outgoing transitions.

Note that a chain of decisions may be part of a complex transition, but only the first segment
a chain may contain an event trigger label. All segments may have guard expressions.

10.3.3 Example

Figure 54. Decision

Calculate
total cost

[cost < $50] Charge
customer’s
account

Get
authoriation

[cost ≥ $50]
124 UML v1.1, Notation Guide

Activity Diagram

s

on-
iness

oring
part of
lative
 Each
 to the
10.3.4 Mapping

A decision symbol maps into a Pseudostate of kind branch. Each label on an outgoing arrow map
into a Guard on the corresponding Transition leaving the Pseudostate.

10.4 SWIMLANES

10.4.1 Semantics

Actions may be organized into swimlanes. Swimlanes are a kind of package for organizing resp
sibility for activities within a class. They often correspond to organizational units in a bus
model.

10.4.2 Notation

An activity diagram may be divided visually into “swimlanes” each separated from neighb
swimlanes by vertical solid lines on both sides. Each swimlane represents responsibility for
the overall activity, and may eventually be implemented by one or more objects. The re
ordering of the swimlanes has no semantic significance but might indicate some affinity.
action is assigned to one swimlane. Transitions may cross lanes; there is no significance
routing of a transition path.
UML v 1.1, Notation Guide 125

Activity Diagram

lane
10.4.3 Example

Figure 55. Swimlanes in activity diagram

10.4.4 Mapping

A swimlane maps into a Partition of the States in the ActivityModel. A state symbol in a swim
causes the corresponding State to belong to the corresponding Partition.

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order
126 UML v1.1, Notation Guide

Activity Diagram

bjects
es are
ct owning

wn
There
ch is
e is not
bject is
ferent

ols. A
 arrow
d usu-

ply a
 subse-

ies. It
ever,

nt point
bject at
le,
10.5 ACTION-OBJECT FLOW RELATIONSHIPS

10.5.1 Semantics

Activities operate by and on objects. Two kinds of relationships can be shown: The kinds of o
that have primary responsibility for performing an action and the other objects whose valu
used or determined by the action. These are modeled as messages sent between the obje
the activity model and the objects that are input or output by the actions in the model.

10.5.2 Notation

Object responsible for an action. The object responsible for performing an action can be sho
by drawing a lifeline and placing actions on lifelines Each lifeline represents a distinct object.
may be multiple lifelines for different objects of the same or different kinds. If this approa
chosen, usually a sequence diagram should be used. See Section 7.2. If an object lifelin
shown, then some object within the swimlane package is responsible for the action but the o
not shown. Multiple actions within a single swimlane can be handled by the same or dif
objects.

Object flow. Objects that are input to or output by an action may be shown as object symb
dashed arrow is drawn from an action outgoing transition to an output object, and a dashed
is drawn from an input object to an incoming arrow of an action. The same object may be (an
ally is) the output of one action and the input of one or more subsequent actions.

The control flow (solid) arrows may be omitted when the object flow (dashed) arrows sup
redundant constraint. In other words, when an action produces an output that is input by a
quent action, that object flow relationship implies a control constraint.

Object in state. Frequently the same object is manipulated by a number of successive activit
is possible to show the arrows to and from all of the relevant activities. For greater clarity, how
the object may be displayed multiple times on a diagram, each appearance denoting a differe
during its life. To distinguish the various appearances of the same object, the state of the o
each point may be placed in brackets and appended to the name of the object, for exampPur-
chaseOrder[approved]. This notation may also be used in collaboration diagrams.
UML v 1.1, Notation Guide 127

Activity Diagram

itions
e class
nState
10.5.3 Example

Figure 56. Actions and object flow

10.5.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing Trans
correspond to the incoming and outgoing arrows. The Transitions have no attachments. Th
name and (optional) state name of the object flow symbol map into a Class or a ClassifierI
with the given name(s).

Request service

Take order

Fill order

Collect order

Customer Sales Stockroom

Pay

Deliver order

Order
[entered]

Order
[filled]

Order
[delivered]

Order
[placed]
128 UML v1.1, Notation Guide

Activity Diagram

ified
y users

a rect-
ide the
n and

symbol
bol to

a rect-
 inside
tagon

e. This
om the
.

10.6 CONTROL ICONS

The following icons provide explicit symbols for certain kinds of information that can be spec
on transitions. These icons are not necessary for constructing activity diagrams but man
prefer the added impact that they provide.

10.6.1 Stereotypes

Signal receipt. The receipt of a signal may be shown as a concave pentagon that looks like
angle with a triangular notch in its side (either side). The signature of the signal is shown ins
symbol. A unlabeled transition arrow is drawn from the previous action state to the pentago
another unlabeled transition arrow is drawn from the pentagon to the next action state. This
replaces the event label on the transition. A dashed arrow may be drawn from an object sym
the notch on the pentagon to show the sender of the signal; this is optional.

Signal sending. The sending of a signal may be shown as a convex pentagon that looks like
angle with a triangular point on one side (either side). The signature of the signal is shown
the symbol. A unlabeled transition arrow is drawn from the previous action state to the pen
and another unlabeled transition arrow is drawn from the pentagon to the next action stat
symbol replaces the send-signal label on the transition. A dashed arrow may be drawn fr
point on the pentagon to an object symbol to show the receiver of the signal; this is optional

Figure 57. Symbols for signal receipt and sending

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out

coffeePot
UML v 1.1, Notation Guide 129

Activity Diagram

r use
 lost.)
it on an
 events
 set of
red. If a
nternal

ration
, where
, it must
emains

n state
e tran-
tion.
Deferred events. A frequent situation is when an event that occurs must be “deferred” for late
while some other activity is underway. (Normally an event that is not handled immediately is
This may be thought of as having an internal transition that handles the event and places
internal queue until it is needed or until it is discarded. Each state or activity specifies a set of
that are deferred if they occur during the state or activity. If an event is not included in the
deferred events for a state, then it is discarded from the queue even if it has already occur
transition depends on an event, the transition fires immediately if the event is already on the i
queue. If several transitions are possible, the leading event in the queue takes precedence.

A deferred event is shown by listing it within the state followed by a slash and the special ope
defer. If the event occurs, it is saved and it recurs when the object transitions to another state
it may be deferred again. When the object reaches a state in which the event is not deferred
be accepted or lost. The indication may be placed on a composite state, in which case it r
deferred throughout the composite state.

When used in conjunction with an action state, a deferred event that occurs during the actio
is deferred until the action is completed, when it may trigger a transition. This means that th
sition will occur correctly regardless of the relative order of the event and the action comple

Figure 58. Deferred event

Turn on
Machine

Brew coffee

Pour Coffee

turnOn

light goes out / defer

Get Cups

light goes out

light goes out / defer
130 UML v1.1, Notation Guide

Activity Diagram

 corre-

 corre-

nsition
Pseu-

e

10.6.2 Mapping

An input event symbol maps into an event trigger on the Transition between the States
sponding to the connected state symbols.

An output event symbols maps into a RaiseAction on the Transition between the States
sponding to the connected state symbols.

An input event symbol whose successor is a join symbol maps into an event trigger on a Tra
to an implicit dummy State; the outgoing Transition from the dummy State enters the join
dostate.

A deferred event attached to a state maps into a deferredEvent association from the State to th
Event.
UML v 1.1, Notation Guide 131

Implementation Diagrams

nd run-
ucture

ce code
 be rep-
me, and
 that is
le pro-

tances,

ompo-
ion rela-

enden-
ier com-
nd may

ponents,
11. IMPLEMENTATION DIAGRAMS

Implementation diagrams show aspects of implementation, including source code structure a
time implementation structure. They come in two forms: component diagrams show the str
of the code itself and deployment diagrams show the structure of the run-time system.

11.1 COMPONENT DIAGRAMS

11.1.1 Semantics

A component diagram shows the dependencies among software components, including sour
components, binary code components, and executable components. A software module may
resented as a component type. Some components exist at compile time, some exist at link ti
some exist at run time; some exist at more than one time. A compile-only component is one
only meaningful at compile time; the run-time component in this case would be an executab
gram.

A component diagram has only a type form, not an instance form. To show component ins
use a deployment diagram (possibly a degenerate one without nodes).

11.1.2 Notation

A component diagram is a graph of components connected by dependency relationships. C
nents may also be connected to components by physical containment representing composit
tionships.

A diagram containing component types and node types may be used to show compiler dep
cies, which are shown as dashed arrows (dependencies) from a client component to a suppl
ponent that it depends on in some way. The kinds of dependencies are language-specific a
be shown as stereotypes of the dependencies.

The diagram may also be used to show interfaces and calling dependencies among com
using dashed arrows from components to interfaces on other components.
132 UML v1.1, Notation Guide

Implementation Diagrams

ftware
sent run-
se they

ponent
11.1.3 Example

Figure 59. Component diagram

11.1.4 Mapping

A component diagram maps to a static model whose elements include Components.

11.2 DEPLOYMENT DIAGRAMS

11.2.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the so
components, processes, and objects that live on them. Software component instances repre
time manifestations of code units. Components that do not exist as run-time entities (becau
have been compiled away) do not appear on these diagrams; they should be shown on com
diagrams.

Planner

Scheduler

GUI

reservations

update
UML v 1.1, Notation Guide 133

Implementation Diagrams

es may
ompo-
nts are
s). This
e used to

 which

ay be
ponent
11.2.2 Notation

A deployment diagram is a graph of nodes connected by communication associations. Nod
contain component instances; this indicates that the component lives or runs on the node. C
nents may contain objects; this indicates that the object is part of the component. Compone
connected to other components by dashed-arrow dependencies (possibly through interface
indicates that one component uses the services of another component; a stereotype may b
indicate the precise dependency if needed.

The deployment type diagram may also be used to show which components may run on
nodes, by using dashed arrows with the stereotype «supports».

Migration of components from node to node or objects from component to component m
shown using the «becomes» stereotype of the dependency relationship. In this case the com
or object is resident on its node or component only part of the entire time.

Note that a process is just a special kind of object (see Active Object).

11.2.3 Example

Figure 60. Nodes

AdminServer:HostMachine

Joe’sMachine:PC

:Scheduler reservations

:Planner

«database»
meetingsDB
134 UML v1.1, Notation Guide

Implementation Diagrams

cularly

 at least
 human
instances.
n node

g in it or

e it is.

nt type.

dicates
 or com-

dicates a
ate the
11.2.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not parti
distinguished in the model.

11.3 NODES

11.3.1 Semantics

A node is a run-time physical object that represents a processing resource, generally having
a memory and often processing capability as well. Nodes include computing devices but also
resources or mechanical processing resources. Nodes may be represented as type and as
Run time computational instances, both objects and component instances, may reside o
instances.

11.3.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.

A node type has a type name:

node-type

A node instance has a name and a type name. The node may have an underlined name strin
below it. The name string has the syntax:

name ‘:’ node-type

The name is the name of the individual node (if any). The node-type says what kind of a nod
Either or both elements are optional.

Dashed-arrow dependency arrows show the capability of a node type to support a compone
A stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance symbols. This in
that the items reside on the node instances. Containment may also be shown by aggregation
position association paths.

Nodes may be connected by associations to other nodes. An association between nodes in
communication path between the nodes. The association may have a stereotype to indic
nature of the communication path (for example, the kind of channel or network).
UML v 1.1, Notation Guide 135

Implementation Diagrams

another

e node
r a com-

g soft-
 human
penden-

ts a run-
11.3.3 Example

This example shows two nodes containing an object (cluster) that migrates from one node to
and also an object that remains in place.

Figure 61. Use of nodes to hold objects

11.3.4 Mapping

A node maps to a «node» stereotype of a Class or Object. The nesting of symbols within th
symbol maps into a composition association between a node class and constituent classes o
position link between a node object and constituent objects.

11.4 COMPONENTS

11.4.1 Semantics

A component type represents a distributable piece of implementation of a system, includin
ware code (source, binary, or executable) but also including business documents, etc., in a
system. Components may be used to show dependencies, such as compiler and run-time de
cies or information dependencies in a human orgzanization. A component instance represen

Node1

Node2

«cluster»

x y

«cluster»

x y

«becomes»

«database»

w z
136 UML v1.1, Notation Guide

Implementation Diagrams

at run

 may be
th the

, binary,
kable

ts at run
time implementation unit and may be used to show implementation units that have identity
time, including their location on nodes.

11.4.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its side.

A component type has a type name:

component-type

A component instance has a name and a type. The name of the component and its type
shown as an underlined string either within the component symbol or above or below it, wi
syntax:

component-name ‘:’ component-type

A property may be used to indicate the life-cycle stage that the component describes (source
executable, or more than one of those). Components (including programs, DLLs, run-time lin
images, etc.) may be located on nodes.

11.4.3 Example

The example shows a component with interfaces and also a component that contains objec
time.

Figure 62. Component

Dictionary spell-check

synonyms

mymailer: Mailer

Mailbox
RoutingList
UML v 1.1, Notation Guide 137

Implementation Diagrams

phical
Objects

ses that
te from
ime.

 within
ggrega-
ation”

with a
roperty
t during

odes as

ding to
11.4.4 Mapping

A component symbol maps into a «component» stereotype of a Class or an Object. Gra
nesting of other symbols maps into composition association of the Component to Classes or
in it.

Interface circles attached to the component symbol by solid lines map into supports Dependencies
to Interfaces.

11.5 LOCATION OF COMPONENTS AND OBJECTS WITHIN OBJECTS

11.5.1 Semantics

Instances may be located within other instances. For example, objects may live in proces
live in components that live on nodes. In more complicated situations processes may migra
node to node, so a process may live in many nodes and deal with many components over t

11.5.2 Notation

The location of an instance (including objects, component instances, and node instances)
another instance may be shown by physical nesting. Containment may also be shown by a
tion or composition association paths. Alternately, an instance may have a property tag “loc
whose value is the name of the containing instance.

If an object moves during an interaction, then it may be as two or more occurrences
“becomes” dependency between the occurrences. The dependency may have a time p
attached to it to show the time when the object moves. Each occurrence represents the objec
a period of time. Messages should be directed to the correct occurrence of the object.

11.5.3 Example

See the other diagrams in this section for examples of objects and components located on n
well as migration.

11.5.4 Mapping

Physical nesting of symbols maps into composition association from the Element correspon
the outer symbol to the Elements corresponding to the contents.
138 UML v1.1, Notation Guide

Index
A
action state 123
action, special 105
action-clause 111
activation 84
active object 96
activity diagram 121
actor 77
aggregation 54
association 50
association class 51, 59
association name 50
association role 52
attribute 29

B
background information 4
binary association 50
bind 71
bound template 40

C
call event 109
class 23
class diagram 22
class pathname 43
classifier 23
collaboration 88, 92
collaboration diagram 88, 89
comment 16
communicates 78
complex transition 113
component 136
component diagram 132
composite object 48
composite state 104

composition 62
concurrent substate 107
constraint 16
context 89
creation (of an object) 102

D
decision 124
deferred event 130
dependency 71
deployment diagram 133
derived element 73
design pattern 90
destination state 113
destruction (of an object) 102
discriminator 67
disjoint substate 107
do 105

E
entry action 105
event 108
exit action 105
expression 8
extends (a use case) 78
extensibility mechanism 18, 20
extension point 77

F
final state 107

G
generalization 67
generalization constraints 68
graphic symbols 3
UML v 1.1, Notation Guide 139

Index
graphs 3
guard-condition 111

H
history state 114
hyperlinks 4

I
importing packages 44
initial state 107
interaction 93
interaction diagram 80
interface 36
internal activity 105
internal transition 120
invisible links 4

K
keyword 8

L
label 7
link 65
list compartment 26
location of object 138

M
message (in a sequence diagram) 85
message flow 98
metaclass 43
multiobject 95
Multiplicity 56

N
name 6
name compartment 25
n-ary association 61
navigability 53
navigation expression 9
nested state machine 105
node 135
note 10

O
object 46, 94
object diagram 23
object flow 127
object lifeline 83
object state 127
operation 32
or-association 51
overview 1

P
package 13
parameterized class 38
participates (in a use case) 78
pathname 43
paths 4
pattern 90
programming-language type 8
property string 18

Q
qualifier 58

R
refinement 71
role (association) 52
rolename 54

S
send-clause 111
sending message

within state diagram 116
sequence diagram 80
signal event 109
source state 113
state

composite 104
statechart diagram 103
stereotypes 20
string 5
stubbed transition 115
substate 106
swimlane 125
140 UML v 1.1, Notation Guide

Index
synchronization bar 113

T
tagged value 18
template 38
time event 109
timing mark 87
timing mark (in state diagram) 112
trace 71
transition 111
transition time 112
transition to nested state 114
type 35

U
usage dependency 71
use case 77
use case diagram 75
use case relationships 78
uses (a use case) 78
utility 42

V
visibility 29
UML v 1.1, Notation Guide 141

Index
142 UML v 1.1, Notation Guide

	Contents
	1. Document Overview
	2. Diagram Elements
	2.1 Graphs and their Contents
	2.2 Drawing paths
	2.3 Invisible Hyperlinks And The Role Of Tools
	2.4 Background information
	2.4.1 Presentation options

	2.5 String
	2.5.1 Semantics
	2.5.2 Notation
	2.5.3 Presentation options
	2.5.4 Example
	2.5.5 Mapping

	2.6 Name
	2.6.1 Semantics
	2.6.2 Notation
	2.6.3 Example
	2.6.4 Mapping

	2.7 Label
	2.7.1 Semantics
	2.7.2 Notation
	2.7.3 Presentation options
	2.7.4 Example

	2.8 Keywords
	2.9 Expression
	2.9.1 Semantics
	2.9.2 Notation
	2.9.3 Example
	2.9.4 Mapping
	2.9.5 OCL Expressions
	2.9.6 Selected OCL Notation
	2.9.7 Example

	2.10 Note
	2.10.1 Semantics
	2.10.2 Notation
	2.10.3 Presentation options
	2.10.4 Example
	2.10.5 Mapping

	2.11 Type-Instance Correspondence

	3. Model Management
	3.1 Packages and Model Organization
	3.1.1 Semantics
	3.1.2 Notation
	3.1.3 Presentation options
	3.1.4 Style guidelines
	3.1.5 Example
	3.1.6 Mapping

	4. General Extension Mechanisms
	4.1 Constraint and Comment
	4.1.1 Semantics
	4.1.2 Notation
	4.1.3 Example
	4.1.4 Mapping

	4.2 Element Properties
	4.2.1 Semantics
	4.2.2 Notation
	4.2.3 Presentation options
	4.2.4 Style guidelines
	4.2.5 Example
	4.2.6 Mapping

	4.3 Stereotypes
	4.3.1 Semantics
	4.3.2 Notation
	4.3.3 Example
	4.3.4 Mapping

	5. Static Structure Diagrams
	5.1 Class diagram
	5.1.1 Semantics
	5.1.2 Notation
	5.1.3 Mapping

	5.2 Object diagram
	5.3 Classifer
	5.4 Class
	5.4.1 Semantics
	5.4.2 Basic notation
	5.4.3 Presentation options
	5.4.4 Style guidelines
	5.4.5 Example
	5.4.6 Mapping

	5.5 Name Compartment
	5.5.1 Notation
	5.5.2 Mapping

	5.6 List Compartment
	5.6.1 Notation
	5.6.2 Presentation options
	5.6.3 Example
	5.6.4 Mapping

	5.7 Attribute
	5.7.1 Semantics
	5.7.2 Notation
	5.7.3 Presentation options
	5.7.4 Style guidelines
	5.7.5 Example
	5.7.6 Mapping

	5.8 Operation
	5.8.1 Operation
	5.8.2 Notation
	5.8.3 Presentation options
	5.8.4 Style guidelines
	5.8.5 Example
	5.8.6 Mapping
	5.8.7 Signal reception

	5.9 Type vs. Implementation Class
	5.9.1 Semantics
	5.9.2 Notation
	5.9.3 Example
	5.9.4 Mapping

	5.10 Interfaces
	5.10.1 Semantics
	5.10.2 Notation
	5.10.3 Example
	5.10.4 Mapping

	5.11 Parameterized Class (Template)
	5.11.1 Semantics
	5.11.2 Notation
	5.11.3 Presentation options
	5.11.4 Example
	5.11.5 Mapping

	5.12 Bound Element
	5.12.1 Semantics
	5.12.2 Notation
	5.12.3 Style guidelines
	5.12.4 Example
	5.12.5 Mapping

	5.13 Utility
	5.13.1 Semantics
	5.13.2 Notation
	5.13.3 Example
	5.13.4 Mapping

	5.14 Metaclass
	5.14.1 Semantics
	5.14.2 Notation
	5.14.3 Mapping

	5.15 Class Pathnames
	5.15.1 Notation
	5.15.2 Example
	5.15.3 Mapping

	5.16 Importing a package
	5.16.1 Semantics
	5.16.2 Notation
	5.16.3 Example
	5.16.4 Mapping

	5.17 Object
	5.17.1 Semantics
	5.17.2 Notation
	5.17.3 Presentation options
	5.17.4 Style guidelines
	5.17.5 Variations
	5.17.6 Example
	5.17.7 Mapping

	5.18 Composite object
	5.18.1 Semantics
	5.18.2 Notation
	5.18.3 Example
	5.18.4 Mapping

	5.19 Association
	5.20 Binary Association
	5.20.1 Semantics
	5.20.2 Notation
	5.20.3 Presentation options
	5.20.4 Style guidelines
	5.20.5 Options
	5.20.6 Example
	5.20.7 Mapping

	5.21 Association End
	5.21.1 Semantics
	5.21.2 Notation
	5.21.3 Presentation options
	5.21.4 Style guidelines
	5.21.5 Example
	5.21.6 Mapping

	5.22 Multiplicity
	5.22.1 Semantics
	5.22.2 Notation
	5.22.3 Style guidelines
	5.22.4 Example
	5.22.5 Mapping

	5.23 Qualifier
	5.23.1 Semantics
	5.23.2 Notation
	5.23.3 Presentation options
	5.23.4 Style guidelines
	5.23.5 Example
	5.23.6 Mapping

	5.24 Association Class
	5.24.1 Semantics
	5.24.2 Notation
	5.24.3 Presentation options
	5.24.4 Style guidelines
	5.24.5 Example
	5.24.6 Mapping

	5.25 N-ary association
	5.25.1 Semantics
	5.25.2 Notation
	5.25.3 Style guidelines
	5.25.4 Example
	5.25.5 Mapping

	5.26 Composition
	5.26.1 Semantics
	5.26.2 Notation
	5.26.3 Design guidelines
	5.26.4 Example
	5.26.5 Mapping

	5.27 Links
	5.27.1 Semantics
	5.27.2 Notation
	5.27.3 Example
	5.27.4 Mapping

	5.28 Generalization
	5.28.1 Semantics
	5.28.2 Notation
	5.28.3 Presentation options
	5.28.4 Details
	5.28.5 Example
	5.28.6 Mapping

	5.29 Dependency
	5.29.1 Semantics
	5.29.2 Notation
	5.29.3 Presentation options
	5.29.4 Example
	5.29.5 Mapping

	5.30 Derived Element
	5.30.1 Semantics
	5.30.2 Notation
	5.30.3 Style guidelines
	5.30.4 Example
	5.30.5 Mapping

	6. Use Case Diagrams
	6.1 Use Case Diagram
	6.1.1 Semantics
	6.1.2 Notation
	6.1.3 Example
	6.1.4 Mapping

	6.2 Use Case
	6.2.1 Semantics
	6.2.2 Notation
	6.2.3 Presentation options
	6.2.4 Style guidelines
	6.2.5 Mapping

	6.3 Actor
	6.3.1 Semantics
	6.3.2 Notation
	6.3.3 Style guidelines
	6.3.4 Mapping

	6.4 Use case relationships
	6.4.1 Semantics
	6.4.2 Notation
	6.4.3 Example
	6.4.4 Mapping

	7. Sequence Diagrams
	7.1 Kinds of Interaction Diagrams
	7.2 Sequence diagram
	7.2.1 Semantics
	7.2.2 Notation
	7.2.3 Presentation options
	7.2.4 Example
	7.2.5 Mapping

	7.3 Object lifeline
	7.3.1 Semantics
	7.3.2 Notation
	7.3.3 Example
	7.3.4 Mapping

	7.4 Activation
	7.4.1 Semantics
	7.4.2 Notation
	7.4.3 Example
	7.4.4 Mapping

	7.5 Message
	7.5.1 Semantics
	7.5.2 Notation
	7.5.3 Presentation options
	7.5.4 Mapping

	7.6 Transition Times
	7.6.1 Semantics
	7.6.2 Notation
	7.6.3 Example
	7.6.4 Mapping

	8. Collaboration Diagrams
	8.1 C�ollaboration
	8.1.1 Semantics
	8.1.2 Notation

	8.2 Collaboration diagram
	8.2.1 Semantics
	8.2.2 Notation
	8.2.3 Example
	8.2.4 Mapping

	8.3 Pattern Structure
	8.3.1 Semantics
	8.3.2 Notation
	8.3.3 Mapping

	8.4 Collaboration Contents
	8.4.1 Semantics
	8.4.2 Notation

	8.5 Interactions
	8.5.1 Semantics
	8.5.2 Notation
	8.5.3 Example

	8.6 Collaboration Roles
	8.6.1 Semantics
	8.6.2 Notation
	8.6.3 Presentation options
	8.6.4 Example
	8.6.5 Mapping

	8.7 Multiobject
	8.7.1 Semantics
	8.7.2 Notation
	8.7.3 Example
	8.7.4 Mapping

	8.8 Active object
	8.8.1 Semantics
	8.8.2 Notation
	8.8.3 Example
	8.8.4 Mapping

	8.9 Message flows
	8.9.1 Semantics
	8.9.2 Notation
	8.9.3 Presentation options
	8.9.4 Example
	8.9.5 Mapping

	8.10 Creation/destruction markers
	8.10.1 Semantics
	8.10.2 Notation
	8.10.3 Presentation options
	8.10.4 Example
	8.10.5 Mapping

	9. Statechart Diagrams
	9.1 Statechart Diagram
	9.1.1 Semantics
	9.1.2 Notation
	9.1.3 Mapping

	9.2 States
	9.2.1 Semantics
	9.2.2 Notation
	9.2.3 Example
	9.2.4 Mapping

	9.3 Composite States
	9.3.1 Semantics
	9.3.2 Notation
	9.3.3 Example
	9.3.4 Mapping

	9.4 Events
	9.4.1 Semantics
	9.4.2 Notation
	9.4.3 Example
	9.4.4 Mapping

	9.5 Simple transitions
	9.5.1 Semantics
	9.5.2 Notation
	9.5.3 Example
	9.5.4 Mapping

	9.6 Complex transitions
	9.6.1 Semantics
	9.6.2 Notation
	9.6.3 Example
	9.6.4 Mapping

	9.7 Transitions to nested states
	9.7.1 Semantics
	9.7.2 Notation
	9.7.3 Presentation options
	9.7.4 Example
	9.7.5 Mapping

	9.8 Sending messages
	9.8.1 Semantics
	9.8.2 Notation
	9.8.3 Example
	9.8.4 Mapping

	9.9 Internal transitions
	9.9.1 Semantics
	9.9.2 Notation
	9.9.3 Mapping

	10. Activity Diagram
	10.1 Activity diagram
	10.1.1 Semantics
	10.1.2 Notation
	10.1.3 Example
	10.1.4 Mapping

	10.2 Action state
	10.2.1 Semantics
	10.2.2 Notation
	10.2.3 Presentation options
	10.2.4 Example
	10.2.5 Mapping

	10.3 Decisions
	10.3.1 Semantics
	10.3.2 Notation
	10.3.3 Example
	10.3.4 Mapping

	10.4 Swimlanes
	10.4.1 Semantics
	10.4.2 Notation
	10.4.3 Example
	10.4.4 Mapping

	10.5 Action-Object Flow Relationships
	10.5.1 Semantics
	10.5.2 Notation
	10.5.3 Example
	10.5.4 Mapping

	10.6 Control Icons
	10.6.1 Stereotypes
	10.6.2 Mapping

	11. Implementation Diagrams
	11.1 Component diagrams
	11.1.1 Semantics
	11.1.2 Notation
	11.1.3 Example
	11.1.4 Mapping

	11.2 Deployment diagrams
	11.2.1 Semantics
	11.2.2 Notation
	11.2.3 Example
	11.2.4 Mapping

	11.3 Nodes
	11.3.1 Semantics
	11.3.2 Notation
	11.3.3 Example
	11.3.4 Mapping

	11.4 Components
	11.4.1 Semantics
	11.4.2 Notation
	11.4.3 Example
	11.4.4 Mapping

	11.5 Location of Components and objects within obj...
	11.5.1 Semantics
	11.5.2 Notation
	11.5.3 Example
	11.5.4 Mapping

	Index

